K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

A B C P N M

Xét diện tích tam giác ABC:

\(S_{ABC}=\frac{AM.BC}{2}=\frac{CP.AB}{2}=\frac{BN.AC}{2}\)

=> \(AM.BC=CP.AB=BN.AC\)

=> \(AM=\frac{CP.AB}{BC}\)\(BN=\frac{CP.AB}{AC}\)

Theo gt, ta có:

\(BC+AM=AB+CP\)

\(\Leftrightarrow BC+\frac{CP.AB}{BC}=AB+CP\)

\(\frac{\Leftrightarrow CP.AB}{BC}-AB=CP-BC\)

\(\frac{\Leftrightarrow\left(CP.AB-AB.BC\right)}{BC}=\frac{\left(CP.BC-BC^2\right)}{BC}\)

\(\frac{\Leftrightarrow AB.\left(CP-BC\right)}{BC}=\frac{BC.\left(CP-BC\right)}{BC}\)

\(\Rightarrow AB=BC\)(1)

Theo gt, ta lại có:

\(AC+BN=AB+CP\)

\(\Leftrightarrow AC+\frac{AB.PC}{AC}=AB+CP\)

\(\frac{\Leftrightarrow AB.PC}{AC}-AB=PC-AC\)

\(\frac{\Leftrightarrow\left(AB.PC-AB.AC\right)}{AC}=\frac{\left(CP.AC-AC^2\right)}{AC}\)

\(\frac{\Leftrightarrow AB.\left(PC-AC\right)}{AC}=\frac{AC.\left(CP-AC\right)}{AC}\)

\(\Rightarrow AB=AC\)(2)

Từ (1) và (2) suy ra \(AB=BC=AC\)

=> ĐPCM

13 tháng 3 2017

albaba nguyễn làm bài này cái !