\(\dfrac{5x}{7y}\)=\(\dfrac{-1}{3}\)và -2x+3y=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
+) 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)
5x = 7z => \(\dfrac{x}{7}=\dfrac{z}{5}\Rightarrow\dfrac{x}{21}=\dfrac{z}{15}\) (2)
Từ (1) và (2) => \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\cdot21=15,75\\y=\dfrac{3}{4}\cdot14=10,5\\z=\dfrac{3}{4}\cdot15=11,25\end{matrix}\right.\)
+) Áp dụng tính chất DTSBN : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot19=38\\y=2\cdot21=42\end{matrix}\right.\)
a) Ta có: \(2x=3y\)
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}\)(1)
Ta có: 5x=7z
nên \(\dfrac{x}{7}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)
mà 3x-7y+5z=30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=\dfrac{3}{4}\\\dfrac{7y}{98}=\dfrac{3}{4}\\\dfrac{5z}{75}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{169}{4}\\7y=\dfrac{147}{2}\\5z=\dfrac{225}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{169}{12}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{169}{12};\dfrac{21}{2};\dfrac{45}{4}\right)\)
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
nên \(\dfrac{2x}{38}=\dfrac{y}{21}\)
mà 2x-y=34
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy: (x,y)=(38;42)
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
Ta có\(\dfrac{5x}{7y}=\dfrac{-1}{3}\Leftrightarrow\dfrac{x}{y}=\dfrac{-7}{15}\Leftrightarrow\dfrac{x}{-7}=\dfrac{y}{15}\)
Áp dụng dãy tỉ số bằng nhau
\(\dfrac{x}{-7}=\dfrac{y}{15}=\dfrac{-2x}{14}=\dfrac{3y}{45}=\dfrac{-2x+3y}{14+45}=\dfrac{7}{59}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{-7}=\dfrac{7}{59}\\\dfrac{y}{15}=\dfrac{7}{59}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{49}{59}\\y=\dfrac{105}{59}\end{matrix}\right.\)