Một hình trụ có thể tích V=125πcm3 và chiều cao là 5cm thì diện tích xung quanh của hình trụ bằng
A.25πcm3 B.50πcm3 C.40πcm3 D.30πcm3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
Lời giải:
Diện tích đáy: $5.5=25$ (cm2)
Thể tích hình lăng trụ: $25\times 7=175$ (cm3)
Diện tích xung quanh hình lăng trụ:
$4.5.7=140$ (cm2)
\(S_{XQ}=\left(5+12+13\right)\cdot8=8\cdot26=204\left(cm^2\right)\)
\(S_{TP}=204+2\cdot5\cdot12\cdot2=204+4\cdot60=204+240=444\left(cm^2\right)\)
\(V=5\cdot12\cdot8=60\cdot8=480\left(cm^3\right)\)
+ Tính cạnh huyền của đáy :√5^2 + 12^2 = 13 (cm)
+ Diện tích xung quanh của lăng trụ : ( 5 + 12 + 13 ). 8 = 240(cm2)
+ Diện tích một đáy : (5.12):2 = 30(cm2)
+ Thể tích lăng trụ : 30.8 = 240(cm3)
Hok tốt
Vì đáy là tam giác vuông nên độ dài cạnh huyền của đáy là: \(\sqrt{5^2+12^2}=\sqrt{169}=13\)
Diện tích xung quanh của hình lăng trụ đứng đấy là: (5+12+13) .8 = 240 (cm2 )
Thể tích của hình lăng trụ đứng đấy là: \(\frac{1}{2}.5+12.10=122,5\)
Đáp án A
Gọi chiều cao của hình trụ là h
Ta có:
S x q = 2 π R 2 h ⇔ 2 π . 5 2 . h = 300 π ⇒ h = 6 ( c m )
`V=S_đ .h<=>125\pi=S_đ .5<=>S_đ =25\pi (cm^2)`
`=>\pi .r^2=25\pi<=>r=5(cm)`
Vậy `S_[xq]=2\pi .r.h=2\pi .5.5=50\pi (cm^2)`
`->` Nếu đổi đơn vị của đ/á thành `cm^2` thì chọn `bb B`