K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MNIH có

MH//NI

MN//IH

góc MHI=90 độ

Do đó: MNIH là hình chữ nhật

b: Xét ΔMHQ vuông tại H và ΔNIP vuông tại I có

MQ=NP

góc Q=góc P

Do đó: ΔMHQ=ΔNIP

=>QH=IP

c: Xét ΔMKQ có

MH vừa là đường cao, vừa là trung tuyến

nên ΔMKQ cân tại M

=>góc MQK=góc MKQ=góc P

=>MK//NP

mà MN//KP

nên MNPK là hình bình hành

=>MP cắt NK tại trung điểm của mỗi đường

=>M,E,P thẳng hàng

16 tháng 12 2021

a: Xét tứ giác MHKQ có 

MH//QK

MH=QK

Do đó: MHKQ là hình bình hành

mà MH=MQ

nên MHKQ là hình thoi

16 tháng 12 2016

đề bài sai thánh giải đc à

24 tháng 10 2023

M N Q P A I K

MN//PQ (cạnh đối hbh) => MI//KQ

Ta có

\(MI=\dfrac{MN}{2};KQ=\dfrac{PQ}{2}\) Mà MN=PQ (cạnh đối hbh) => MI=KQ

=> MIKQ là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Ta có

MA=MQ (gt) (1)

\(MN=2MQ\left(gt\right)\Rightarrow MQ=\dfrac{MN}{2}\) (2)

Ta có

\(MI=\dfrac{MN}{2}\) (3)

Từ (1) (2) (3) \(\Rightarrow MA=MI=\dfrac{MN}{2}\) => tg AMI cân tại M

Ta có

\(\widehat{AMI}=\widehat{AMP}-\widehat{M}=180^o-120^o=60^o\)

Xét tg AMI có

\(\widehat{MAI}+\widehat{MIA}+\widehat{AMI}=180^o\)

\(\Rightarrow\widehat{MAI}+\widehat{MIA}=180^o-\widehat{AMI}=180^o-60^o=120^o\)

Mà \(\widehat{MAI}=\widehat{MIA}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\dfrac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\widehat{AMI}=60^o\Rightarrow\Delta AMI\) là tg đều

c/

Xét hbh MNPQ có

MQ//NP => MA//NP

MA=MQ (gt); MQ=NP (cạnh đối hbh)

=> MA=NP

=> APMN là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

Ta có

\(MI=AI=\dfrac{MN}{2}\)  (cạnh tg đều)

\(NI=\dfrac{MN}{2}\)

\(\Rightarrow AI=NI=\dfrac{MN}{2}\) => tg AIN cân tại I

Ta có \(\widehat{AIN}=\widehat{MIN}-\widehat{AIM}=180^o-60^o=120^o\)

Xét tg cân AIN có

\(\widehat{AIN}+\widehat{IAN}+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{IAN}+\widehat{INA}=180^o-\widehat{AIN}=180^o-120^o=60^o\)

Mà \(\widehat{IAN}=\widehat{INA}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{IAN}=\widehat{INA}=\dfrac{60^o}{2}=30^o\)

Xét tg AMN có

\(\widehat{MAN}+\widehat{AMI}+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{MAN}=180^o-\widehat{AMI}-\widehat{INA}=180^o-60^o-30^o=90^o\)

=> APMN là hình chữ nhật (hình bình hành có 1 góc vuông là HCN

 

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

14 tháng 9 2021

\(1,\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\) là đtb \(\Delta ABC\Rightarrow MN=\dfrac{1}{2}BC.hay.2MN=BC\)

\(2,\) Vì \(MN//BC\left(t/c.đtb\right)\Rightarrow MNCB\) là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\)

\(\Rightarrow MNCB\) là hthang cân

\(3,\left\{{}\begin{matrix}\widehat{MNO}=\widehat{OCB}\\\widehat{NMO}=\widehat{OBC}\end{matrix}\right.\Rightarrow\Delta MNO\sim\Delta COB\left(g.g\right)\\ \Rightarrow\dfrac{MN}{BC}=\dfrac{MO}{OC}\Rightarrow\dfrac{2MI}{2CK}=\dfrac{MO}{OC}\Rightarrow\dfrac{MI}{CK}=\dfrac{MO}{OC}\)

Lại có \(\widehat{IMO}=\widehat{OCK}\left(so.le.trong\right)\)

\(\Rightarrow\Delta IMO\sim\Delta KCO\left(c.g.c\right)\)

Do đó \(\widehat{MOI}=\widehat{KOC}\Rightarrow I;O;K\) thẳng hàng \(\left(1\right)\)

Chứng minh tương tự, ta được \(\Delta MAI\sim\Delta BAK\Rightarrow\widehat{AHE}=\widehat{BHF}\Rightarrow A;I;K\) thẳng hàng \(\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow A;I;O;K\) thẳng hàng 

14 tháng 9 2021

1) Xét ΔABC cân tại A, có:

M là trung điểm của AB, N là trung điểm của AC

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC ⇒ BC = 2MN (ĐPCM)

2) Xét tứ giác MNCB, có:

MN // BC(MN là đường trung bình)

MB = NC (do AB = AC và M, N là trung điểm AB, AC)

⇒ MNCB là hình thang.

mà:

\(\widehat{MBC}=\widehat{NCB}\) (do ΔABC cân tại A)

⇒ MNCB là hình thang cân.

d. Xét ΔAMN, có:

\(\widehat{AMN}=\widehat{ANM}\) (đồng vị so với \(\widehat{ABC},\widehat{ACB}\))

⇒ ΔAMN cân tại A, mà AI ⊥ MN (do MN là cạnh đáy, I là trung điểm MN) ⇒ A,I thẳng hàng 

Chứng minh tương tự cho tam giác ABC với BC là cạnh đáy có K là trung điểm, ta được A, I, K thẳng hàng (1)

Có ΔMON cân, do \(\widehat{ONM}=\widehat{OMN}\) vì \(\widehat{BMN}=\widehat{CNM}\) ⇒ OI thẳng hàng do I là trung điểm cạnh đáy MN của tam giác cân. (2)

Từ (1) và (2) ⇒ A, I, O, K thẳng hàng.