cho x>y>0. chứng minh (x-y)/(x+y)<(x^2-x^2)/(x^2+x^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Mà x+y=1 nên suy ra:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)
\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)
=>đpcm.
Dấu ''='' xảy ra khi x=y=1/2
Ta có \(\frac{x-y}{x+y}=\frac{x-y}{x+y}\times1=\frac{x-y}{x+y}\times\frac{x+y}{x+y}\)
\(=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Vì x>y>0 \(\Rightarrow x^2+2xy+y^2>x^2+y^2\)
\(\Rightarrow\frac{x^2-y^2}{x^2+2xy+y^2}<\frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)
\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)
\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)
\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y
\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
Bạn nên viết đề bằng công thức toán để mọi người theo dõi dễ hơn (biểu tượng $\sum$ góc trái khung soạn thảo)