K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Bạn nên viết đề bằng công thức toán để mọi người theo dõi dễ hơn (biểu tượng $\sum$ góc trái khung soạn thảo)

9 tháng 8 2017

2) Ta có:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)

Áp dụng BĐT Schwarz:

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)

Mà x+y=1 nên suy ra:

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)

\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)

=>đpcm.

Dấu ''='' xảy ra khi x=y=1/2

5 tháng 5 2016

Ta có \(\frac{x-y}{x+y}=\frac{x-y}{x+y}\times1=\frac{x-y}{x+y}\times\frac{x+y}{x+y}\)

                    \(=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)

Vì x>y>0 \(\Rightarrow x^2+2xy+y^2>x^2+y^2\)

\(\Rightarrow\frac{x^2-y^2}{x^2+2xy+y^2}<\frac{x^2-y^2}{x^2+y^2}\)

\(\Rightarrow\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)

19 tháng 11 2015

\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)

\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)

\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y

\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$