Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)
\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)
\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y
\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)
Do x>y>0 nên x+y\(\ne0\)
Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)
Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)
Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))
Ta có \(\frac{x-y}{x+y}=\frac{x-y}{x+y}\times1=\frac{x-y}{x+y}\times\frac{x+y}{x+y}\)
\(=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Vì x>y>0 \(\Rightarrow x^2+2xy+y^2>x^2+y^2\)
\(\Rightarrow\frac{x^2-y^2}{x^2+2xy+y^2}<\frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)