Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)
\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)
\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y
\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)
x/y + y/x>=2
<=> (x2+ y2)/xy>=2
<=> x2+y2>=2xy
<=> x2 - 2xy + y2>=0
<=> (x-y)2>=0
xảy ra (x-y)2=0 khi x=y
Ta có: \(\left\{{}\begin{matrix}\dfrac{x-y}{x+y}=\dfrac{x+y-2y}{x+y}=1-\dfrac{2y}{x+y}\\\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{x^2+y^2-2y^2}{x^2+y^2}=1-\dfrac{2y^2}{x^2+y^2}\end{matrix}\right.\)
bđt cần chứng minh tương đương với:
\(\dfrac{2y}{x+y}>\dfrac{2y^2}{x^2+y^2}\Leftrightarrow\dfrac{2y\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}>\dfrac{2y^2\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)
\(\Rightarrow2x^2y+2y^3>2y^2x+2y^3\)
\(\Rightarrow2x^2y>2y^2\Leftrightarrow x>y\) (đúng)
\(\Rightarrow\) bất đẳng thức cần cm đúng. (đpcm)
Ta có \(\frac{x-y}{x+y}=\frac{x-y}{x+y}\times1=\frac{x-y}{x+y}\times\frac{x+y}{x+y}\)
\(=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Vì x>y>0 \(\Rightarrow x^2+2xy+y^2>x^2+y^2\)
\(\Rightarrow\frac{x^2-y^2}{x^2+2xy+y^2}<\frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)
Do x>y>0 nên x+y\(\ne0\)
Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)
Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)
Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)