phân tích đa thức thành nhân tử : 3x(x-y) x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\cdot\left(x-y\right)^2-6\cdot\left(y-x\right)\)
\(=3x\left(x-y\right)^2+6\left(x-y\right)\)
\(=\left(x-y\right)\left[3x\left(x-y\right)+6\right]\)
\(=\left(x-y\right)\left(3x^2-3xy+6\right)\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(\left(3x+1\right)^2-\left(3x-1\right)^2\)
\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)
\(=2\cdot6x\)
\(=12x\)
_________
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
\(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\cdot\left(x^2+3y^2\right)\)
______
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)
\(=\left(\sqrt{2x}\right)^2-\left(\sqrt{y}\right)^2\)
\(=\left(\sqrt{2x}-\sqrt{y}\right)\left(\sqrt{2x}+\sqrt{y}\right)\)
3\(x\) - y
= (\(\sqrt{3x}\))2 - (\(\sqrt{y}\))2
= (\(\sqrt{3x}\) - \(\sqrt{y}\)).(\(\sqrt{3x}\) + \(\sqrt{y}\))
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(x+y+3\right)\)
a) \(=3x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(3x-1\right)\)
c) \(2x\left(y-x\right)+3y\left(x-y\right)=\left(2x-3y\right)\left(y-x\right)\)
d) \(=3\left(x^2+2x+1-y^2\right)=3\left[\left(x+1\right)^2-y^2\right]=3\left(x-y+1\right)\left(x+y+1\right)\)
đề bài có bị thiếu k bạn ?
mình ghi thiếu dấu cộng trc x-y bạn ạ