K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A là số nguyên thì 2n+2-5 chia hết cho n+1

=>\(n+1\in\left\{1;-5;-1;5\right\}\)

=>\(n\in\left\{0;-6;-2;4\right\}\)

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)

3 tháng 2 2022

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

3 tháng 2 2022

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh

 

21 tháng 2 2023

a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)

\(\Leftrightarrow n\ne\dfrac{-3}{2}\)

b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)

\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)

\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)

Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)

\(\Leftrightarrow2n+3\in U\left(17\right)\)

mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)

\(\Rightarrow n\in\left(-1;-2;7;-10\right)\) 

Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)

21 tháng 2 2023

Để 2n-3/3n+2 là số nguyên thì \(3\left(2n-3\right)⋮3n+2\)

\(\Leftrightarrow6n-9⋮3n+2\)

\(\Leftrightarrow3n+2\in\left\{1;-1;13;-13\right\}\)

mà n là số nguyên

nên \(n\in\left\{-1;-5\right\}\)

4 tháng 3 2022

\(\dfrac{6n-9}{3n+2}=\dfrac{2\left(3n+2\right)-13}{3n+2}=2-\dfrac{13}{3n+2}\Rightarrow3n+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

3n+21-113-13
nloại-1loại-5

 

22 tháng 7 2021

a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3

b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)

\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n - 31-12-24-4
n42517-1

 

a) Để A là phân số thì \(n-3\ne0\)

hay \(n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

\(\Leftrightarrow4⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{4;2;5;1;7;-1\right\}\)

5 tháng 7 2020

1

n+32n-2=n-4+72n-2=2(n-2)+72n-2=2+72n-2

Để n+32n-2 thì 7⋮2n-2

⇒2n-2∈Ư(7)∈{±1;±7}

2n-2=1⇒n=1,5

2n-2=-1⇒n=0,5

2n-2=7⇒n=4,5

2n-2=-7⇒n=-2,5

Vì n∈Z⇒ Không có giá trị n thõa mãn

1)C=5/1.2+5/2.3+5/3.4+...+5/99.100

   C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)

   C=5.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

   C=5.(1/1-1/100)

   C=5.99/100

   C=99/20

2)|x+1|=5

⇒x+1=5 hoặc x+1=-5

       x=4 hoặc x=-6

  3)                    Giải:

Để A=2n+5/n+3 là số nguyên thì 2n+5 ⋮ n+3

2n+5 ⋮ n+3

⇒2n+6-1 ⋮ n+3

⇒1 ⋮ n+3

Ta có bảng:

n+3=-1 ➜n=-4

n+3=1 ➜n=-2

Vậy n ∈ {-4;-2}