Tìm giá trị nhỏ nhất, giá trị lớn nhất của: \(D=\left|x+1,5\right|-5,7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1,5+\left|2-x\right|\)
Có: \(\left|2-x\right|\ge0\)
\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)
Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)
Vậy: \(Min_A=1,5\)tại \(x=2\)
\(E=1,5-\left|2,7-x\right|\)
Ta thấy : \(\left|2,7-x\right|\ge0\)
\(\Leftrightarrow E=1,5-\left|2,7-x\right|\le1,5\)
Dấu " = " xảy ra
\(\Leftrightarrow2,7-x=0\)
\(\Leftrightarrow x=2,7\)
Vậy \(Max_E=1,5\Leftrightarrow x=2,7\)
a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)
Dấu "=" xảy ra "=" |x| = 0 <=> x = 0
Vậy Amin = 6/13 khi và chỉ khi x = 0
b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)
Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8
Vậy Bmin = -7,9 khi và chỉ khi x = -2,8
c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)
Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5
Vậy Cmin = -5,7 khi và chỉ khi x = -1,5
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
Vì \(\left|x+1,5\right|\ge0\) \(\Rightarrow\left|x+1,5\right|-5,7\ge-5,7 \)
\(\Rightarrow D_{min}=-5,7\Leftrightarrow\left|x+1,5\right|=0\)
\(\Rightarrow x+1,5=0\)
\(\Rightarrow x=-1,5\)
Vậy \(D_{min}=-5,7\Leftrightarrow x=-1,5\)