Tính nhanh:
P=\(\frac{12}{1.4.7}\)+ \(\frac{12}{4.7.10}\)+\(\frac{12}{7.10.13}\)+....+ \(\frac{12}{54.57.60}\)
Giúp e vs e đang cần gấp!!
Đúng em tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức là A, ta có:
A = \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}=2\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+\frac{6}{7.10.13}+...+\frac{6}{54.57.60}\right)\)
A = \(2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-\frac{1}{10.13}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)
A = \(2\left(\frac{1}{1.4}-\frac{1}{57.60}\right)=2\left(\frac{427}{1710}\right)=\frac{427}{855}< \frac{427}{854}=\frac{1}{2}\)
Vậy A < \(\frac{1}{2}\)(điều cần chứng minh)
Ta quy đồng tử để có cùng tử là 3 :
\(\frac{1}{7}=\frac{3}{21}\)
\(\frac{1}{8}=\frac{3}{24}\)
=>\(\frac{3}{21}< x< \frac{3}{24}\)
Nên \(x=\frac{3}{22};\frac{3}{23}\)
Vậy tổng các phân số lớn hơn \(\frac{1}{7}\)và nhỏ hơn \(\frac{1}{8}\)là \(\frac{135}{506}\)
k mình nha các bạn và mình chúc các bạn học giỏi nha
Đặt \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}=A\)
\(\frac{A}{2}=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)
\(\frac{A}{2}=\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{60-54}{54.57.60}\)
\(\frac{A}{2}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{1.4}-\frac{1}{57.60}\)
\(A=\frac{1}{2}-\frac{1}{30.57}< \frac{1}{2}\)
Câu hỏi của thục hà - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Đề sai hả
\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}\)
\(\Rightarrow\frac{1}{2}P=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)
\(\Rightarrow\frac{1}{2}P=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\)
\(\Rightarrow\frac{1}{2}P=\frac{1}{1.4}-\frac{1}{57.60}< \frac{1}{4}\)
\(\Rightarrow P< \frac{1}{4}.2=\frac{1}{2}\)
P = 2*[ 6/(1*4*7) + 6/(4*7*10) + ... + 6/(54*57*60) ]
= 2*[ 1/(1*4) - 1/(4*7) + 1/(4*7) - 1/(7*10) + ... + 1/(54*57) -1/(57*60) ]
= 2*[ 1/(1*4) - 1/(57*60) ]
= 2* (427/1710)
= 427/855 <1/2
S = 1+ 1/2^2 + 1/3^2 +... + 1/100^2
1/2^2 < 1/(1*2)
1/3^2 < 1/(2*3)
...
1/100^2 < 1/(99*100)
==> 1/2^2 +1/3^2 +.., +1/100^2 < 1/(1*2) + 1/(2*3) + ... + 1/(99*100) = 1 -1/2 +1/2 - 1/3 +1/3 -1/4 +... - 1/100
=1 - 1/100 <1
==> 1/2^2 + 1/3^2 +... + 1/100^2 < 1
==> 1 + 1/2^2 + 1/3^2 +... +1/100^2 <2
\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}\)
\(P=4.\left(\frac{3}{1.4.7}+\frac{3}{4.7.10}+\frac{3}{7.10.13}+...+\frac{3}{54.57.60}\right)\)
\(P=4\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)
\(P=4.\left(\frac{1}{4}-\frac{1}{3420}\right)\)
\(P=4.\frac{427}{1710}\)
\(P=\frac{854}{855}\)