Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức là A, ta có:
A = \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}=2\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+\frac{6}{7.10.13}+...+\frac{6}{54.57.60}\right)\)
A = \(2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-\frac{1}{10.13}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)
A = \(2\left(\frac{1}{1.4}-\frac{1}{57.60}\right)=2\left(\frac{427}{1710}\right)=\frac{427}{855}< \frac{427}{854}=\frac{1}{2}\)
Vậy A < \(\frac{1}{2}\)(điều cần chứng minh)
Đặt \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}=A\)
\(\frac{A}{2}=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)
\(\frac{A}{2}=\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{60-54}{54.57.60}\)
\(\frac{A}{2}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{1.4}-\frac{1}{57.60}\)
\(A=\frac{1}{2}-\frac{1}{30.57}< \frac{1}{2}\)
P = 2*[ 6/(1*4*7) + 6/(4*7*10) + ... + 6/(54*57*60) ]
= 2*[ 1/(1*4) - 1/(4*7) + 1/(4*7) - 1/(7*10) + ... + 1/(54*57) -1/(57*60) ]
= 2*[ 1/(1*4) - 1/(57*60) ]
= 2* (427/1710)
= 427/855 <1/2
S = 1+ 1/2^2 + 1/3^2 +... + 1/100^2
1/2^2 < 1/(1*2)
1/3^2 < 1/(2*3)
...
1/100^2 < 1/(99*100)
==> 1/2^2 +1/3^2 +.., +1/100^2 < 1/(1*2) + 1/(2*3) + ... + 1/(99*100) = 1 -1/2 +1/2 - 1/3 +1/3 -1/4 +... - 1/100
=1 - 1/100 <1
==> 1/2^2 + 1/3^2 +... + 1/100^2 < 1
==> 1 + 1/2^2 + 1/3^2 +... +1/100^2 <2
\(P=\dfrac{12}{1\cdot4\cdot7}+\dfrac{12}{4\cdot7\cdot10}+\dfrac{12}{7\cdot10\cdot13}+...+\dfrac{12}{54\cdot57\cdot60}\)
\(P=\dfrac{12}{6}\left(\dfrac{1}{1\cdot4}-\dfrac{1}{4\cdot7}+\dfrac{1}{4\cdot7}-\dfrac{1}{7\cdot10}+...+\dfrac{1}{54\cdot57}-\dfrac{1}{57\cdot60}\right)\)
\(P=2\left(\dfrac{1}{1\cdot4}-\dfrac{1}{57\cdot60}\right)\)
\(P=\dfrac{2}{4}-\dfrac{2}{57\cdot60}=\dfrac{1}{2}-\dfrac{1}{57\cdot30}\)
\(\Rightarrow P< \dfrac{1}{2}\)
mình vừa mới trả lời xong đấy
Câu hỏi của Do Not Ask Why - Toán lớp 7 - Học toán với OnlineMath
Ta có :
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A = \(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
A = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
A = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
A = \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Tách A thành 2 nhóm,ta được :
A = \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Lại có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75}\text{ }\text{ }\)
\(\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\text{ }\text{ }\)
A > \(\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{75}.25+\frac{1}{100}.25\)
\(=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
A < \(\left(\frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}\right)+\left(\frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}\right)=\frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25\)
\(=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(\frac{7}{12}< A< \frac{5}{6}\)
Câu hỏi của thục hà - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Đề sai hả
\(P=\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}\)
\(\Rightarrow\frac{1}{2}P=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)
\(\Rightarrow\frac{1}{2}P=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}\)
\(\Rightarrow\frac{1}{2}P=\frac{1}{1.4}-\frac{1}{57.60}< \frac{1}{4}\)
\(\Rightarrow P< \frac{1}{4}.2=\frac{1}{2}\)