K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

chịu vì mình lớp 5 xin lỗi ha

5 tháng 3 2017

4/9 bạn ạ mình chắc luôn

\(\dfrac{x+2y}{4x-3y}=-2\)

=>x+2y=-8x+6y

=>9x=4y

hay x/y=4/9

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

5 tháng 3 2017

\(\frac{x+2y}{4x-3y}\)=-2

\(\Rightarrow\)-2(4x-3y)=x+2y

\(\Rightarrow\)-8x+6y=x+2y

\(\Rightarrow\)6y-2y=x+8x \(\Rightarrow\)4y=9x

\(\Rightarrow\frac{x}{y}=\frac{4}{9}\)

19 tháng 10 2017

theo giả thiết x^2-y^2-z^2=0 
<=> x^2-y^2=z^2 
Ta có (5x-3y+4z)(5x-3y+4z) = (5x-3y)^2-(4z)^2 
=25.x^2-30xy+9y^2 -16z^2 
=25.x^2-30xy+9y^2 -16(x^2-y^2) ( vì x^2-y^2=z^2) 
=25.x^2-30xy+9.y^2-16.x^2+16.y^2 
=9.x^2-30xy+25.y^2 
=(3x-5y)^2

18 tháng 6 2023

\(\left\{{}\begin{matrix}x+y=7\\-x+2y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x-y=-7\\-x+2y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\\left[-x-\left(-x\right)\right]+\left(-y-2y\right)=-7-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\-3y=-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=7\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(4;3\right)\)