K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

1: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung

AB=AD

Do đó: ΔCAB=ΔCAD

=>góc BCA=góc DCA

=>CA là phân giác của góc DCB

2: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có

CA chung

góc HCA=góc KCA

Do đó: ΔCHA=ΔCKA

=>CK=CH

3: Xét ΔCDB có CH/CD=CK/CB

nên HK//DB

a: Xét ΔCBA vuông tại A và ΔCDA vuông tại A có

AB=AD

AC chung

DO đó: ΔCBA=ΔCDA

Suy ra: \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phan giác của góc BCD

b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có 

CA chung

\(\widehat{HCA}=\widehat{KCA}\)

Do đó: ΔCHA=ΔCKA

Suy ra: CH=CK

c: Xét ΔCDB có 

CH/CD=CK/CB

DO đó; HK//DB

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

16 tháng 1 2019

a,Xét ABM và ACM

AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)

ABM = ACM

BAM = CAM                                                               (1)

Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)

Từ (1) và (2)

AM là tia phân giác của BAC

16 tháng 1 2019

b,Xét BNC và DNC

NC chung , CB = CD 

Góc BCN = DCN

Tam giác:BNC = DNC

Góc BNC = DCN 

Mà BNC + DCN = 180

BNC = 90

CN vuông góc với BD

6 tháng 8 2021

Có \(\widehat{ABD}+\widehat{A}=\widehat{A}+\widehat{ACE}=90^0\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

\(\Rightarrow180^0-\widehat{ABD}=180^0-\widehat{ACE}\)

\(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)

Xét tam giác ABH và tam giác ACK có:

\(AB=CK\)

\(\widehat{ABH}=\widehat{ACK}\)

\(HB=AC\)

nên tam giác ABH= tam giác KCA (c.g.c)

\(\Rightarrow AH=AK\)

22 tháng 11 2021

ffac.ff.garena.vn vô link quay đồ thui ae ơi

a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

AC chung

AB=AD

Do đó: ΔCAB=ΔCAD

Suy ra: \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của góc BCD

b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có

CA chung

\(\widehat{HCA}=\widehat{KCA}\)

Do đó: ΔCHA=ΔCKA

Suy ra: CH=CK

c: Xét ΔCDB có CH/CD=CK/CB

nên HK//DB

21 tháng 1 2022

a/ xét tam giác CAB và tam giác CDA

BC=CD(gt)

BA=AD(gt)

CA: Cạnh chung

vậy tam giác CAD=tam giác CAB(c.c.c)