Cho ΔABCvuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB =
AD.
1) Chứng minh rằng ΔCBA = ΔCDAvà CA là tia phân giác của BCD .
2) Kẻ AH ⊥ CDtại H, kẻ AK ⊥ BCtại K. Chứng minh rằng ΔCHA = ΔCKAvà CK = CH.
3) Chứng minh rằng HK//DB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCBA vuông tại A và ΔCDA vuông tại A có
AB=AD
AC chung
DO đó: ΔCBA=ΔCDA
Suy ra: \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phan giác của góc BCD
b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
\(\widehat{HCA}=\widehat{KCA}\)
Do đó: ΔCHA=ΔCKA
Suy ra: CH=CK
c: Xét ΔCDB có
CH/CD=CK/CB
DO đó; HK//DB
a,Xét ABM và ACM
AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)
ABM = ACM
BAM = CAM (1)
Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)
Từ (1) và (2)
AM là tia phân giác của BAC
b,Xét BNC và DNC
NC chung , CB = CD
Góc BCN = DCN
Tam giác:BNC = DNC
Góc BNC = DCN
Mà BNC + DCN = 180
BNC = 90
CN vuông góc với BD
Có \(\widehat{ABD}+\widehat{A}=\widehat{A}+\widehat{ACE}=90^0\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
\(\Rightarrow180^0-\widehat{ABD}=180^0-\widehat{ACE}\)
\(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)
Xét tam giác ABH và tam giác ACK có:
\(AB=CK\)
\(\widehat{ABH}=\widehat{ACK}\)
\(HB=AC\)
nên tam giác ABH= tam giác KCA (c.g.c)
\(\Rightarrow AH=AK\)
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
AC chung
AB=AD
Do đó: ΔCAB=ΔCAD
Suy ra: \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của góc BCD
b: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
\(\widehat{HCA}=\widehat{KCA}\)
Do đó: ΔCHA=ΔCKA
Suy ra: CH=CK
c: Xét ΔCDB có CH/CD=CK/CB
nên HK//DB
1: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
=>góc BCA=góc DCA
=>CA là phân giác của góc DCB
2: Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
góc HCA=góc KCA
Do đó: ΔCHA=ΔCKA
=>CK=CH
3: Xét ΔCDB có CH/CD=CK/CB
nên HK//DB