cho tam giác ABC có M , N , P lần lượt là trung điểm của AB , BC , CA . Chứng minh tam giác MNP đồng dạng tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ G là;
\(\left\{{}\begin{matrix}x=\dfrac{4+2+0}{3}=2\\y=\dfrac{0-4-2}{3}=-2\end{matrix}\right.\)
Tọa độ M là:
x=(2+0)/2=1 và y=(-4-2)/2=-3
Tọa độ N là:
x=(4+0)/2=2 và y=(0-2)/2=-1
Tọa độ P là;
x=(4+2)/2=3 và y=(0-4)/2=-2
Tọa độ trọng tâm của tam giác MNP là:
\(\left\{{}\begin{matrix}x=\dfrac{1+2+3}{3}=2\\y=\dfrac{-3-1-2}{3}=-2\end{matrix}\right.\)
=>Tam giác ABC và tam giác MNP có chung trọng tâm
a) Xét ΔBAC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{DC}=\dfrac{4}{7}\)
Tam giác ABC có:
+) N là trung điểm của AC
+) M là trung điểm của BC
=> MN là ĐTB của tam giác ABC
Tương tự c/m:
+) PN là ĐTB của tam giác ABC+) PM là ĐTB của tam giác ABC
*Có: MN là ĐTB của tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}AB\)
\(\Rightarrow\dfrac{MN}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)
Có: PN là ĐTB của tam giác ABC
\(\Rightarrow PN=\dfrac{1}{2}BC\)
\(\Rightarrow\dfrac{PN}{BC}=\dfrac{\dfrac{1}{2}BC}{BC}=\dfrac{1}{2}\)
Có: PM là ĐTB của tam giác ABC
\(\Rightarrow PM=\dfrac{1}{2}AC\Rightarrow\dfrac{PM}{AC}=\dfrac{\dfrac{1}{2}AC}{AC}=\dfrac{1}{2}\)
Xét tam giác MNP và tam giác ABC có:
\(\dfrac{MN}{AB}=\dfrac{NP}{BC}=\dfrac{MP}{AC}\left(=\dfrac{1}{2}\right)\)