K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 8 2021

\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)

Suy ra \(E=A-B=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

4 tháng 8 2021

\(\frac{14949}{20200}\)

30 tháng 7 2018

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\cdot\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

15 tháng 8 2016

3F= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>F 

15 tháng 8 2016

H=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

=> 4H=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)

=n(n+1)(n+2)(n+3)

 

27 tháng 1 2017

Nhân cả hai vế với 2

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}=\frac{2}{x}\left(\frac{1}{1.2}-\frac{1}{99.100}\right).\)

Xét vế trái

\(VT=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)

\(VT=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(VT=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{2}{x}=1\Rightarrow x=2\)

27 tháng 1 2017

có đúng ko vậy bạn