tìm n để sô sau là số chính phương
n5-n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt n2 + n + 43 = a2
4n2 + 4n + 172 = 4a2
( 2n + 1 )2 + 171 = 4a2
( 2n + 1 )2 - 4a2 = - 171
( 2n + 1 - 2a ) ( 2n + 1 + 2a ) = -171
tới đây lập bảng mà làm
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
đừng trả lời, có trả lời nó cũng hổng tick đâu mà chi cho nó mệt
Lời giải không rõ lắm nhé!
Vì A là số tự nhiên nên n^2 + 3n chia hết cho 8 => n(n+3) chia hết cho 8.
Vì A là số nguyên tố nên (n^2 + 3n ; 8 ) = 1 mà n(n+3) chia hết cho 8 => n hoặc n+3 chia hết cho 8.
Khi 1 trong 2 số trên chia hết cho 8 thì số còn lại phải là snt do (n^2 + 3n ; 8 ) = 1
Mà khi 1 trong 2 số chia 8 phải có thương là 1 vì nếu lớn hơn 1 thì A không là snt.
Vậy n = 8 hoặc n = 5.
Dễ dàng CM được: \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5\left(n-1\right)n\left(n+1\right)\)
Do đó: \(n^5-n⋮3\)(tích 3 số nguyên liên tiếp)
=> \(n^5-n+2\)chia 3 dư 2
Mà số chính phương chia 3 dư 0 hoặc 1
Vậy không tồn tại số n thả mãn