Với m , n là các số tự nhiên và \(n\ne0\) . CMR :
\(405^n+2^{405}+m^2\)ko chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Sao Cũng Được - Toán lớp 6 - Học toán với OnlineMath
Đặt A=:405^n +2^405+m^2
=(...5)+2^4.101+1+m^2
=(...5)+(...2)+m^2
=(...7)+m^2
Vì m^2 là số chính phương, mà số chính phương không có tận cùng là 3=>(...7)+m^2 không có tận cùng là 0=>A không có tận cùng là 0=>A không chia hết cho 10
m,n\(\in\)N*
C= 405n+2405+m2 ko chia hết cho 10
ta có :405ncó tận cùng là 5
2405=2404.2=22.202.2=4202.2
mà 4202có tận cùng là 6
=> 4202.2 có chữ số tận cùng là 2
=>405n+2405có chữ số tận cùng là 7
mà m2là số chính phương nên ko có tận cùng là 3
=>405n+2405+m2 ko có chữ số tận cùng là 0
=>C ko chia hết cho 10.
tìm diện tích của 1 hình thang biết rằng nếu kéo dài đáybé 2m về 1 phia thì ta đc hình vuông có chu vi 24m.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN RẤT RẤT GẤP!!!
Ta có : 405\(^n\) = ....5
2\(^{405}\) = 2\(^{404}\) x 2 = ( ...6 ) x 2 = .....2
m\(^2\) là số chính phương nên có chữ số tận cùng khác 3 . Vậy a cố chữ số tận cùng khác 0
\(\Rightarrow\) A không chia hết cho 10
Đúng nha vuanhtai
ta có: 405^n = ....5
2^405 = 2^404 . 2 = (.....6) x 2 = .......2
vì m^2 là số chính phương nên ko thể có chữ số tận cùng là 3 => a ko có chữ số tận cùng là 0
=> A ko chia hết cho 10
a.
Ta có: \(405^n=......5\)
\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)
\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)
b.
\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)
\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)
Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên
\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
+ \(n+2=1\Leftrightarrow n=-1\) ( loại )
+ \(n+2=2\Leftrightarrow n=0\)
+ \(n+2=3\Leftrightarrow n=1\)
+ \(n+2=6\Leftrightarrow n=4\)
+ \(n+2=9\Leftrightarrow n=7\)
+ \(n+2=18\Leftrightarrow n=16\)
Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)
c.
Ta có \(55=5\cdot11\) mà \(\left(5;1\right)=1\)
Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)
\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)
+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)
+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)
Đề bài thiếu à
Khó quá!(@_@)