Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu N lẻ thì lẻ(lẻ+5) là chẵn
Nếu N chẵn thì chẵn(chẵn+5) là chẵn
Cả hai trường hợp đều cho ta kết quả chẵn nén với mọi n (N+5)chia hết cho 2
Xét các TH:
-TH1:\(n=2k\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)
-TH2:\(n=2k+1\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)
Xét \(\(2\)\) trường hợp
Trường hợp 1:
+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))
Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:
+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))
Theo bài ra ta có:
\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)
\(\(=2.\left(n^2+7n+3\right)⋮2\)\)
\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)
_Minh ngụy_
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Câu hỏi của Sao Cũng Được - Toán lớp 6 - Học toán với OnlineMath