K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 6 2021

a) \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

DD
1 tháng 6 2021

b) \(\sqrt{x-26}+\sqrt{y+20}+\sqrt{z+3}=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z-2\sqrt{x-26}-2\sqrt{y+20}-2\sqrt{z+3}=0\)

\(\Leftrightarrow x-26-2\sqrt{x-26}+1+y+20-2\sqrt{y+20}+1+z+3+2\sqrt{z+3}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-26}-1\right)^2+\left(\sqrt{y+20}-1\right)^2+\left(\sqrt{z+3}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-26}-1=0\\\sqrt{y+20}-1=0\\\sqrt{z+3}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=-19\\z=-2\end{cases}}\)

17 tháng 4 2018

Ta có : 

\(\left(x+1\right)^{20}+\left(y+2\right)^{26}=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)

Thay \(x=-1\) và \(y=-2\) vào đa thức \(2x^8-3y^5+2\) ta được : 

\(2\left(-1\right)^8-3\left(-2\right)^5+2\)

\(=\)\(2.1-3.\left(-32\right)+2\)

\(=\)\(2+96+2\)

\(=\)\(100\)

Vậy giá trị của đa thức \(2x^8-3y^5+2\) tại x, y thoã mãn điều kiện \(\left(x+1\right)^{20}+\left(y+2\right)^{26}=0\) là \(100\)

Chúc bạn học tốt ~ 

10 tháng 2 2017

Vì \(\left(x+1\right)^{20}\ge0;\left(y+2\right)^{26}\ge0\) ( số mũ đều chẵn )

\(\Rightarrow\left(x+1\right)^{20}+\left(y+2\right)^{26}\ge0\)

Dấu "=" xảy ra <=> \(\left(x+1\right)^{20}=0;\left(y+2\right)^{26}=0\)

=> \(x+1=0;y+2=0\)

=> x = - 1; y = - 2

\(\Rightarrow2.x^8-3x^5+2=2.\left(-1\right)^8-3.\left(-1\right)^5+2=7\)

13 tháng 10 2021
Lấy 1 -1 2
6 tháng 11 2019

b) Ta có: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}.\)

=> \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)\(4x-3y+2z=36.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{1}=9\Rightarrow x=9.1=9\\\frac{y}{2}=9\Rightarrow y=9.2=18\\\frac{z}{3}=9\Rightarrow z=9.3=27\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(9;18;27\right).\)

c) Ta có: \(\frac{x}{4}=\frac{y}{8}.\)

=> \(\frac{x}{4}=\frac{y}{8}\)\(x.y=128.\)

Đặt \(\frac{x}{4}=\frac{y}{8}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)

Có: \(x.y=128\)

=> \(4k.8k=128\)

=> \(32.k^2=128\)

=> \(k^2=128:32\)

=> \(k^2=4\)

=> \(k=\pm2.\)

TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=8.2=16\end{matrix}\right.\)

TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-2\right)=-8\\y=8.\left(-2\right)=-16\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(8;16\right),\left(-8;-16\right).\)

Chúc bạn học tốt!

21 tháng 2 2017

\(\left|x-2017\right|=2016\)

\(\Rightarrow\left[\begin{matrix}x-2017=-2016\\x-2017=2016\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=1\\x=4033\end{matrix}\right.\)

Vậy x= 1 hoặc x= 4033

\(3x-20=-8\)

\(\Rightarrow3x=12\Rightarrow x=\frac{12}{3}=4\)

\(26-2x=18+\left|-14\right|\)

\(\Rightarrow26-2x=32\)

\(\Rightarrow2x=26-32\)

\(\Rightarrow2x=-6\)

\(\Rightarrow x=-3\)