K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

b) Ta có: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}.\)

=> \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)\(4x-3y+2z=36.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{1}=9\Rightarrow x=9.1=9\\\frac{y}{2}=9\Rightarrow y=9.2=18\\\frac{z}{3}=9\Rightarrow z=9.3=27\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(9;18;27\right).\)

c) Ta có: \(\frac{x}{4}=\frac{y}{8}.\)

=> \(\frac{x}{4}=\frac{y}{8}\)\(x.y=128.\)

Đặt \(\frac{x}{4}=\frac{y}{8}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)

Có: \(x.y=128\)

=> \(4k.8k=128\)

=> \(32.k^2=128\)

=> \(k^2=128:32\)

=> \(k^2=4\)

=> \(k=\pm2.\)

TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=8.2=16\end{matrix}\right.\)

TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-2\right)=-8\\y=8.\left(-2\right)=-16\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(8;16\right),\left(-8;-16\right).\)

Chúc bạn học tốt!

3 tháng 10 2016

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

20 tháng 6

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

10 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  

`#3107.101117`

a)

`x \div y \div z = 4 \div 3 \div 9`

`=> x/4 = y/3 = z/9`

`=> x/4 = (3y)/9 = (4z)/36`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`

`=> x/4 = y/3 = z/9 = 2`

`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`

Vậy, `x = 8; y = 6; z = 18`

c)

\(x \div y \div z = 1 \div 2 \div 3\)

`=> x/1 = y/2 = z/3`

`=> (4x)/4 = (3y)/6 = (2z)/6`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`

`=> x/1 = y/2 = z/3 = 9`

`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`

Vậy, `x = 9; y = 18; z = 27`

Các câu còn lại cậu làm tương tự nhé.

24 tháng 8 2021

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x.y}{2.3}=\dfrac{54}{6}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=81\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm9\end{matrix}\right.\)

b) \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{3}\right)^2=\dfrac{x^2-y^2}{5^2-3^2}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{25}{4}\\y^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{2}\\y=\pm\dfrac{3}{2}\end{matrix}\right.\)

 

c: Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)

nên \(\dfrac{y}{15}=\dfrac{z}{21}\)

mà \(\dfrac{x}{10}=\dfrac{y}{15}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

18 tháng 5 2016

1.

\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)

=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

=> x=2x10=20

y=2x15=30

z=2x21=42

18 tháng 5 2016

2.

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)

=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)

y=\(-\frac{9}{2}x2=-9\)

z=\(-\frac{9}{2}x3=-\frac{27}{2}\)

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

26 tháng 11 2014

1) ADTCDTSBN, ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4

\(\frac{x}{3}=4\)=> x = 3 . 4 = 12

\(\frac{y}{4}=4\)=> y = 4 . 4 = 16

\(\frac{z}{5}=4\)=> z = 5 . 4 = 20

Vậy x = 12

       y = 16

       z = 20

 

1 tháng 2 2015

x=12

y=16

z=20

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42