A=2022/1.2+2022/2.3+2022/3.4+....+2022/2021+2022
Giups mik với mn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính nhanh: A= \(\dfrac{2022}{1.2}+\dfrac{2022}{2.3}+\dfrac{2022}{3.4}+...+\dfrac{2022}{2021.2022}\)
A=2022(1/1-1/2+1/2-1/3+...+1/2021-1/2022)
=2022(1/1-1/2022)
=2022.2021/2022
ket qua tu tinh nha
A = \(\dfrac{2022}{1.2}+\dfrac{2022}{2.3}+\dfrac{2022}{3.4}+...+\dfrac{2022}{2021.2022}\)
= \(\dfrac{2022}{1}-\dfrac{2022}{2}+\dfrac{2022}{2}-\dfrac{2022}{3}+\dfrac{2022}{3}-\dfrac{2022}{4}+...+\dfrac{2022}{2021}-\dfrac{2022}{2022}\)
= \(\dfrac{2022}{1}-\dfrac{2022}{2022}\)
= \(2021\)
Chúc bạn học tốt!! ^^
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}\)
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{99-98}{98.99}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=1-\dfrac{1}{99}\)
\(A=\dfrac{2021}{2022}=\dfrac{2022-1}{2022}=1-\dfrac{1}{2022}\)
Có \(2022>99>0\Leftrightarrow\dfrac{1}{99}>\dfrac{1}{2022}\)
Suy ra \(A>B\).
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)
=>x+1=2022
hay x=2021
=>1-1/2+1/2-1/3+...+1/x-1/(x+1)=2022/2021
=>1-1/(x+1)=2022/2021
=>1/(x+1)=-1/2021=1/-2021
=>x+1=-2021
=>x=-2022
\(S=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2021+2022}\)
\(S=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(S=\dfrac{1}{2}-\dfrac{1}{2022}\)
\(S=\dfrac{1011}{2022}-\dfrac{1}{2022}\)
\(S=\dfrac{505}{1011}\)
\(\dfrac{C_n^k}{\left(k+1\right)\left(k+2\right)}=\dfrac{n!}{\left(k+1\right)\left(k+2\right).k!\left(n-k\right)!}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}.\dfrac{\left(n+2\right)!}{\left(n+2-\left(k+2\right)\right)!\left(k+2\right)!}\)
\(=\dfrac{1}{\left(n+1\right)\left(n+2\right)}.C_{n+2}^{k+2}\)
Đặt tổng trên là A
\(\Rightarrow A=\dfrac{-1.C_{2024}^3}{2023.2024}+\dfrac{2.C_{2024}^4}{2023.2024}+\dfrac{-3.C_{2024}^5}{2023.2024}+...+\dfrac{2022.C_{2024}^{2024}}{2023.2024}\)
\(=\dfrac{1}{2023.2024}\left(-1.C_{2024}^3+2.C_{2024}^4+...+2022.C_{2024}^{2024}\right)=\dfrac{1}{2023.2024}.B\)
Xét \(C=-2.\left(-C_{2024}^3+C_{2024}^4-C_{2024}^5+...+C_{2024}^{2024}\right)\)
\(\Rightarrow B-C=-3C_{2024}^3+4C_{2024}^4-5C_{2024}^5+...+2024.C_{2024}^{2024}\)
Ta có:
\(k.C_n^k=\dfrac{n!.k}{\left(n-k\right)!.k!}=n.\dfrac{\left(n-1\right)!}{\left(\left(n-1\right)-\left(k-1\right)\right)!.\left(k-1\right)!}=n.C_{n-1}^{k-1}\)
\(\Rightarrow B-C=-2024.C_{2023}^2+2024C_{2023}^3+...+2024.C_{2023}^{2023}\)
\(=-2024\left(C_{2023}^2-C_{2023}^3+...-C_{2023}^{2023}\right)\)
Xét khai triển:
\(\left(1-x\right)^k=C_k^0-xC_k^1+x^2C_k^2+...+\left(-1\right)^kx^k.C_k^k\)
Thay \(k=2024\); \(x=1\)
\(\Rightarrow0=C_{2024}^0-C_{2024}^1+C_{2024}^2-C_{2024}^3+...+C_{2024}^{2024}\)
\(\Rightarrow-C_{2024}^3+...+C_{2024}^{2024}=C_{2024}^1-C_{2024}^2-1\)
\(\Rightarrow C=-2\left(C_{2024}^1-C_{2024}^2-1\right)=-2\left(2023-C_{2024}^2\right)\)
Thay \(k=2023;x=1\)
\(\Rightarrow0=C_{2023}^0-C_{2023}^1+C_{2023}^2+...-C_{2023}^{2023}\)
\(\Rightarrow C_{2023}^2-C_{2023}^3+...-C_{2023}^{2023}=C_{2023}^1-1=2022\)
\(\Rightarrow B-C=-2024.2022\)
\(\Rightarrow B=C-2022.2024=-2\left(2023-C_{2024}^2\right)-2022.2024\)
\(=-2.2023+2023.2024-2022.2024\)
\(=-2022\)
\(\Rightarrow A=\dfrac{-2022}{2023.2024}\)
\(2022\times2005-2000\times2022+15\times2022-20\times2021\)
\(=2022\times\left(2005-2000+15\right)-20\times2021\)
\(=2022\times20-20\times2021\)
\(=20\times\left(2022-2021\right)\)
\(=20\times1\)
\(=20\)
a, 2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 - 20 \(\times\) 2021
= (2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 )- 20 \(\times\) 2021
= 2022 \(\times\) (2005 - 2000 + 15) - 20 \(\times\) 2021
= 2022 \(\times\) (5 +15) - 20 \(\times\) 2021
= 2022 \(\times\) 20 - 20 \(\times\) 2021
= 20 \(\times\) (2022 - 2021)
= 20 \(\times\) 1
= 20
Ta có:
\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)
\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)
Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)
Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)
Vậy \(A>B\)
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(A=\frac{2022}{1.2}+\frac{2022}{2.3}+\frac{2022}{3.4}+...+\frac{2022}{2021.2022}\)
\(A=2022\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2021.2022}\right)\)
\(B=2022\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2021}-\frac{1}{2022}\right)\)
\(B=2022\left(1-\frac{1}{2022}\right)\)
\(B=2021\)