Bài 2: Cho ΔABC ⊥ tại A, đường cao AH, đường phân giác AD, kẻ DA⊥AC (K∈AC)
a) Cm ΔABC đồng dạng ΔHAC
b) Cho AB= 6cm, AC= 8cm. Tính BD
c) Cm AC.AD=√2AB.CK
Giúp mk vs ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
a) Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
=> BC = 10 (cm)
Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (t/c đường p/g)
=> \(\dfrac{AD}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AD}{3}=\dfrac{DC}{5}\)
Áp dụng DTSBN ta có:
\(\dfrac{AD}{3}=\dfrac{DC}{5}=\dfrac{AD+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{3}=1\Rightarrow AD=3\\\dfrac{DC}{5}=1\Rightarrow DC=5\end{matrix}\right.\)
b) ΔABH và ΔCBA (bạn tự xét nhé) theo trường hợp g-g
=> \(\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)
Xét ΔABI và ΔCBD ta có:
\(\widehat{ABI}=\widehat{DBC}\) (BD là đường p/g)
\(\widehat{BAI}=\widehat{BCD}\) (cmt)
=> ΔABI ~ ΔCBD (g-g)
c) Xét ΔABH ta có:
BI là đường p/g (gt)
=> \(\dfrac{IH}{IA}=\dfrac{BH}{AB}\) (t/c đường p/g)
Ta có: \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (cm a)
\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (ΔABH ~ ΔCBA)
=> đpcm
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE
c: Xét ΔBEC và ΔADC có
CB/CA=CE/CD
góc C chung
=>ΔBEC đồg dạng vơi ΔADC
a: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/2=6/5=1,2
=>AD=3,6cm; CD=2,4cm
Xét ΔABCcó ED//BC
nên ED/BC=AD/AC
=>ED/4=3,6/6=3/5
=>ED=2,4cm
b: Xét ΔADB và ΔAEC có
góc A chung
góc ABD=góc ACE
=>ΔABD đồng dạng với ΔACE
c: Xét ΔIEB và ΔIDC có
góc IEB=góc IDC
góc EIB=góc DIC
=>ΔIEB đồng dạng với ΔIDC
=>EB/DC=IE/ID
=>IE*DC=EB*ID
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC=10cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó: \(\dfrac{BD}{6}=\dfrac{5}{7}\)
hay \(BD=\dfrac{30}{7}cm\)
Vậy: \(BD=\dfrac{30}{7}cm\)