K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

5 tháng 7 2020

Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T

a,Xét ΔHAB và ΔABC

\(\widehat{BHA}=\widehat{BAH}=90^o\)

Góc B chung

\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)

c,Xét ΔABC ta có:

BC2=AC2+AB2

BC2=162+122

BC2=400

BC=√400=20cm

Ta có ΔHAB~ΔABC(câu a)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a.Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)

b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow AH.BC=AB.AC\)

c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)

\(BC=20cm\)

Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12\times16}{20}\)

\(\Rightarrow AH=9,6cm\)

Chúc bạn học tốt.Phần d mình chưa giải đc nha

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

=>ΔABD đồng dạng với ΔACB

=>AB/AC=AD/AB

Xét ΔABD có AF là phân giác

nên FD/FB=AD/AB

Xét ΔABC có AE là phân giác

nên EB/EC=AB/AC

=>EB/EC=FD/FB

30 tháng 11 2023

a: AE+EC=AC

=>\(EC+\dfrac{2}{5}AC=AC\)

=>\(EC=\dfrac{3}{5}AC\)
\(\dfrac{AE}{EC}=\dfrac{\dfrac{2}{5}AC}{\dfrac{3}{5}AC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)

Xét ΔACB có IE//AB

nên \(\dfrac{IC}{IB}=\dfrac{EC}{EA}=\dfrac{3}{2}\)

b: Xét ΔACB có IE//AB

nên \(\dfrac{IE}{AB}=\dfrac{CI}{CB}=\dfrac{3}{5}\)

AD+DB=AB

=>\(DB+\dfrac{2}{3}AB=AB\)

=>\(DB=\dfrac{1}{3}AB\)

=>AB=3BD

\(\dfrac{IE}{AB}=\dfrac{3}{5}\)

=>\(\dfrac{IE}{3BD}=\dfrac{3}{5}\)

=>\(\dfrac{IE}{BD}=\dfrac{9}{5}\)

Xét ΔFEI có DB//EI

nên \(\dfrac{FD}{FE}=\dfrac{DB}{EI}=\dfrac{5}{9}\)

=>\(FD=\dfrac{5}{9}FE\)

FD+DE=FE

=>\(DE+\dfrac{5}{9}FE=FE\)

=>\(DE=\dfrac{4}{9}FE\)

\(\dfrac{DF}{DE}=\dfrac{\dfrac{5}{9}EF}{\dfrac{4}{9}EF}=\dfrac{5}{9}:\dfrac{4}{9}=\dfrac{5}{4}\)

c: CI/IB=3/2

=>CI=3/2BI

BI+CI=BC

=>\(BC=\dfrac{3}{2}BI+BI=\dfrac{5}{2}BI\)

Xét ΔFEI có DB//EI

nên \(\dfrac{FB}{BI}=\dfrac{FD}{DE}=\dfrac{5}{4}\)

=>\(FB=\dfrac{5}{4}BI\)

mà \(BC=\dfrac{5}{2}BI\)

nên \(\dfrac{FB}{BC}=\dfrac{\dfrac{5}{4}BI}{\dfrac{5}{2}BI}=\dfrac{5}{4}:\dfrac{5}{2}=\dfrac{1}{2}\)

=>\(\dfrac{FB}{FC}=\dfrac{1}{2+1}=\dfrac{1}{3}\)

8 tháng 7 2018

mọi người làm giúp em với ạ

31 tháng 3 2019

a)xét tam giác ADB và tam giác ABC có :

góc ABD = ACB

góc A chung

vậy tam giác ADB đồng dạng tam giác ABC

Suy ra: AD/AB=AB/AC suy ra AB bình phương = AD.AC

b) Ta có AE là phân giác góc A nên:

AC/AB =EC/EB 

AD/AB=FD/FB 

Mặt khác: AD/AB=AB/AC 

Suy ra: FD/FB=EB/EC