Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔCBD có CF là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{FD}{FB}=\dfrac{CD}{CB}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔCBA có CE là đường phân giác ứng với cạnh BA(gt)
nên \(\dfrac{EB}{EA}=\dfrac{CB}{CA}\)(Tính chất tia phân giác của tam giác)(2)
Ta có: ΔABC\(\sim\)ΔBDC(cmt)
nên \(\dfrac{CB}{CD}=\dfrac{CA}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{CD}{CB}=\dfrac{CB}{CA}\)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{FD}{FB}=\dfrac{EB}{EA}\)(Đpcm)
a) Xét ΔABC và ΔBDC có
\(\widehat{BCD}\) chung
\(\widehat{BAC}=\widehat{DBC}\)(gt)
Do đó: ΔABC∼ΔBDC(g-g)
a: Xét ΔABC và ΔBDC có
góc C chung
góc BAC=góc DBC
=>ΔABC đồng dạng với ΔBDC
b: FD/FB=CD/CB
EB/EA=CB/CA
mà CD/CB=CB/CA
nên FD/FB=EB/EA
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a,Xét \(\Delta\) ABD và \(\Delta\) ACB,ta có:
Góc ABD = góc ACB(gt)
Góc A-chung
=>\(\Delta\) ABD \(\sim\) \(\Delta\) ACB(g.g)(đpcm).
b,Xét \(\Delta\) ABD ,có đường phân giác AE:
=>\(\dfrac{ED}{AD}=\dfrac{EB}{AB}\) <=>\(\dfrac{ED}{EB}=\dfrac{AD}{AB}\) (1)
Ta có: \(\Delta\) ABD \(\sim\) \(\Delta\) ACB(câu a)
=>\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\) (2)
Từ (1) và (2) =>\(\dfrac{ED}{EB}=\dfrac{AB}{AC}\) (đpcm).
c,-.-đùa à.
a: Xét ΔABD và ΔACB có
góc ABD=góc ACB
góc BAD chung
=>ΔABD đồng dạng với ΔACB
=>AB/AC=AD/AB
Xét ΔABD có AF là phân giác
nên FD/FB=AD/AB
Xét ΔABC có AE là phân giác
nên EB/EC=AB/AC
=>EB/EC=FD/FB