gpt: \(\left(6x+7\right)^2\left(x+1\right)\left(3x+4\right)=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 6x+7=a Ta có \(\left(a^2-1\right)a^2=72\Leftrightarrow a^4-a^2-72=0\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)Mà a^2+8>0 nên \(a^2-9=0\Rightarrow a=+-3\Rightarrow6x+7=+-3\Rightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\)
Ta có : \(\left(6x+6\right)\left(6x+8\right)\left(6x+7\right)^2=72\)
=> \(\left(36x^2+84x+48\right)\left(36x^2+84x+49\right)=72\)
- Đặt \(36x^2+84x+48=a\) ta được phương trình :
\(a\left(a+1\right)=72\)
=> \(a^2+a-72=0\)
=> \(\left(a-8\right)\left(a+9\right)=0\)
=> \(\left[{}\begin{matrix}a=8\\a=-9\end{matrix}\right.\)
- Thay lại \(36x^2+84x+48=a\) vào phương trình trên ta được :
\(\left[{}\begin{matrix}36x^2+84x+48=8\\36x^2+84x+48=-9\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(6x+7\right)^2=9\\\left(6x+7\right)^2=-8\left(vl\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}6x+7=\sqrt{9}\\6x+7=-\sqrt{9}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}6x=-4\\6x=-10\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{2}{3};-\frac{5}{3}\right\}\)
đặt 6x+7=a
suy ra (a-1)(a+1)a2=72
(a2-1)a2=72
a4-a2+1/4=289/4
(a2-1/2)=289/4
hoặc a2-1/2=17/2
a2-1/2=-17/2
suy ra hoặc a2=9
a2=-8(loại vì a2>=0>-8 với mọi a )
suy ra a=3
a=-3
hay 6x+7=3 suy ra x=-2/3
6x+7=-3 suy ra x=-5/3
vậy S={-2/3,-5/3}
a. Làm gọn 1 chút xíu:
\(y=\left(x^{11}+2x^7-3x^5-6x\right)\left(3x^7+6x^2-2\right)\)
\(y'=\left(11x^{10}+14x^6-15x^4-6\right)\left(3x^7+6x^2-2\right)+\left(21x^6+12x\right)\left(x^{11}+2x^7-3x^5-6x\right)\)
b.
\(y'=5\left(x^4-\dfrac{2}{3x}\right)^4\left(4x^3+\dfrac{2}{3x^2}\right)\Rightarrow y'\left(10\right)=5\left(10^4-\dfrac{2}{30}\right)^4\left(4.10^3+\dfrac{2}{300}\right)=?\)
c.
\(y'=\dfrac{7}{\left(x+1\right)^2}\Rightarrow y'\left(4\right)=\dfrac{7}{25}\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
đặt t = x + 1. Phương trình có dạng:
(6t + 1)2.t .(3t +1) = 6
<=> (36t2 + 12t + 1).(3t2 + t) = 6
<=> [12.(3t2 + t) + 1](3t2 + 1) = 6
<=> 12.(3t2 +1)2 + (3t2 +1) - 6 = 0
<=> 12.(3t2 +1)2 + 9(3t2 +1) - 8.(3t2 +t) - 6 = 0
<=> 3(3t2 + t). [4(3t2 +t) +3] - 2. [4(3t2 +t) +3] = 0
<=> [4(3t2 +t) +3]. [3(3t2 +t) - 2] = 0
<=> 4(3t2 +t) +3 = 0 hoặc 3(3t2 +t) - 2 = 0
+) 4(3t2 +t) +3 = 0 <=> 12t2 + 4t + 3 = 0 Vô nghiệm vì 12t2 + 4t + 3 = 8t2 + (2t +1)2 + 2 > 0 với mọi t
+) 3(3t2 +t) - 2 = 0 <=> 9t2 + 3t - 2 = 0 <=> 9t2 + 6t - 3t - 2 = 0 <=> (3t + 2)(3t -1) = 0
=> t = -2/3 hoặc t = 1/3
=> x + 1 = -2/3 hoặc x + 1 = 1/3
=> x = -5/3 hoặc x = -2/3