Cho \(A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{8100}\right)\)Chứng minh :\(A>\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x. (x^2)^3 = x^5
x^7 ≠ x^5
Nếu,
x^7 - x^5 = 0
mủ lẻ nên phương trình có 3 nghiệm
Đáp số:
x = -1
hoặc
x = 0
hoặc
x = 1
a, \(\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{9}\right)\cdot\left(1-\frac{1}{16}\right)\cdot\left(1-\frac{1}{25}\right)\cdot\left(1-\frac{1}{36}\right)\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot\frac{35}{36}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\frac{4.6}{5.5}\cdot\frac{5.7}{6.6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}\cdot\frac{3.4.5.6.7}{2.3.4.5.6}=\frac{1}{6}\cdot\frac{7}{2}\)
\(=\frac{7}{12}\)
b, \(\left(2-\frac{3}{2}\right)\cdot\left(2-\frac{4}{3}\right)\cdot\left(2-\frac{5}{4}\right)\cdot\left(2-\frac{6}{5}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1.2.3.4}{2.3.4.5}\)
\(=\frac{1}{5}\)
Câu A mình làm được nhưng dài quá
B=\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).............\left(1+\frac{1}{2015}\right)\)
=\(\frac{3}{2}.\frac{4}{3}..............\frac{2016}{2015}\)
=\(\frac{3.4...............2016}{2.3................2015}\)
=\(\frac{2016}{2}=1008\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)
Ta có: \(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{8099}{8100}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{89.91}{90.90}\)
\(=\frac{1.2.3.4...89}{2.3.4...90}.\frac{3.4.5.91}{2.3.4...90}\)
\(=\frac{1}{90}.\frac{91}{2}\)
\(=\frac{91}{180}>\frac{90}{180}=\frac{1}{2}\)
=>\(A>\frac{1}{2}\)