tính tổng 1/1 + 1/1+2 + 1/1+2+3 + ... + 1/1+2+3+ ... +9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
Tổng số đầu và số cuối là: n + 1
Số cặp là: \(\dfrac{n}{2}\)
Tổng là: \(\dfrac{n}{2}\left(n+1\right)=\dfrac{n^2}{2}+\dfrac{n}{2}=\dfrac{n^2+n}{2}\)
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
S1=1+3+3^2+3^3+3^4+...+3^99
=>3.S1=3.(1+3+3^2+3^3+3^4+...+3^99)
=3+3^2+3^3+3^4+...+3^100
=>2.S1=3.S1-S1=(3+3^2+3^3+3^4+...+3^100)-(1+3+3^2+3^3+3^4+...+3^99)=3^100-1
=>S1=(3^100-1)/2
S1=1+3+32+33+...+399
3*S1=3+32+33+...+3100
3*S1+1=1+3+32+...+3100=S1+3100(chuyển vế , ta được)
=> 3*S1-S1=3100-1
2*S1=3100-1
S1=3100-1/2
mình cũng k chắc nữa
Chúc bạn học tốt!^_^
Câu S2 bạn nhân 2 lên thì được 1+ 1/2+ 1/2^2+ ........+ 1/ 2^10 rồi lấy 2 . (S2) - S2 thì ra kết quả 1 - 1/ 2^10 .
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
Lời giải:
Gọi tổng trên là $A$
\(A=\frac{1}{\frac{1\times 2}{2}}+\frac{1}{\frac{2\times 3}{2}}+\frac{1}{\frac{3\times 4}{2}}+\frac{1}{\frac{3\times 4}{2}}+...+\frac{1}{\frac{9\times 10}{2}}\)
\(=\frac{2}{1\times 2}+\frac{2}{2\times 3}+\frac{2}{3\times 4}+....+\frac{2}{9\times 10}\)
\(=2\times (\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+...+\frac{10-9}{9\times 10})\)
\(=2\times (1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{9}-\frac{1}{10})\)
\(=2\times (1-\frac{1}{10})=2\times \frac{9}{10}=\frac{9}{5}\)
5555