Cmr 1 + 19^19 + 93^199 + 1993^1994 không phải là số chính phương
PLEASE HELP ME !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+9^{19}+93^{199}+1993^{1994}\)
Ta có :
\(9\text{≡}0\left(mod3\right)\)
\(\Rightarrow9^{19}\text{≡}0\left(mod3\right)\)
\(93\text{≡}0\left(mod3\right)\)
\(\Rightarrow93^{199}\text{≡}0\left(mod3\right)\)
\(1993\text{≡}1\left(mod3\right)\)
\(\Rightarrow1993^{1994}\text{≡}1\left(mod3\right)\)
\(\Rightarrow A=1+9^{19}+93^{199}+1993^{1994}\text{≡}1+0+0+1\text{≡}2\left(mod3\right)\)
Một số nguyên có thể có dạng \(3k;3k+1\)hoặc \(3k+2\)
TH1 : \(\left(3k\right)^2=9k^2\text{≡}0\left(mod3\right)\)
TH2 : \(3k+1\text{≡}1\left(mod3\right)\)
\(\Rightarrow\left(3k+1\right)^2\text{≡}1\left(mod3\right)\)
TH3 : \(3k+2\text{≡}2\left(mod3\right)\)
\(\Rightarrow\left(3k+2\right)^2\text{≡}2^2\text{≡}1\left(mod3\right)\)
Do đó số chính phương nào cũng chia hết cho 3 hoặc chia 3 dư 1.
Mà \(A\text{≡}2\left(mod3\right)\)hay \(A\)chia 3 dư 2 nên A không phải số chính phương.
Vậy ...
Ta có:
\(1+19^{19}+\left(93^2\right)^{99}.93+\left(1992^2\right)^{997}=1+\left(...9\right)+\left(..9\right).93+\left(..9\right)\)
\(=\left(...26\right)\)
Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ;
Ở đây ta thấy hàng chục là 2(số chẵn)
\(\Rightarrow\)\(1+19^{19}+93^{199}+1993^{1994}\)ko phải là số chính phương.