MN ƠI GIÚP E VS E ĐG CẦN GẤP LẮM Ạ
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi E, F lần lượt là hình chiếu của điểm M trên AB, AC. Chứng minh: AB.AF+FA.AE >=4AE.AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác AMHN có : ^AMH = ^MAN = ^ANH = 900
Vậy tứ giác AMHN là hình chữ nhật
b, Ta có : \(AH^2=AM.AB\)( hệ thức lượng ) (1)
\(AH^2=AN.AC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
Xét tam giác AMN và tam giác ACB ta có :
^A _ chung
\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )
Vậy tam giác AMN ~ tam giác ACB ( c.g.c )
\(\Rightarrow\frac{AM}{AC}=\frac{MN}{BC}\)(3)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{36+64}=10\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=\frac{24}{5}\)cm
Lại có : \(AH^2=AM.AB\)( cmt ) \(\Rightarrow AM=\frac{AH^2}{AB}=\frac{96}{25}\)cm
\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{MN}{BC}\Rightarrow MN=\frac{AM.BC}{AC}=\frac{24}{5}\)cm
c, Vì E là trung điểm BH mà tam giác BMH vuông tại M
=> ME là đường trung tuyến
=> \(ME=\frac{1}{2}BH\)(4)
Vì F là trung điểm HC mà tam giác HNC vuông tại N
=> NF là đường trung tuyến
=> \(NF=\frac{1}{2}HC\)(5)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm (6)
=> \(HC=BC-HB=10-\frac{18}{5}=\frac{32}{5}\)cm (7)
Thay (6) vào (4) ta được : \(ME=\frac{1}{2}BH=\frac{1}{2}.\frac{18}{5}=\frac{18}{10}=\frac{9}{5}\)cm
Thay (7) vào (5) ta được : \(NF=\frac{1}{2}HC=\frac{1}{2}.\frac{32}{5}=\frac{32}{10}=\frac{16}{5}\)cm
d, mình chưa tìm ra dữ kiện
Gọi P là giao của BN với EH; Q là giao của MN với HF; K là giao của MN với EF
Ta có
\(EH\perp BC;AI\perp BC\)=> EH//AI \(\Rightarrow\frac{PE}{NA}=\frac{PH}{NI}\) (Talet) \(\Rightarrow\frac{PE}{PH}=\frac{NA}{NI}=1\Rightarrow PE=PH\)
=> BN đi qua trung điểm P của EH
Ta có
EF//BC (gt) => KF//HM \(\Rightarrow\frac{QK}{QM}=\frac{QF}{QH}=\frac{KF}{HM}\) (Talet) => KH//FM
Xét tứ giác KFMH có
KF//HM; KH//FM => KFMH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> KF=HM (Trong hình bình hành các cạnh đối bằng nhau)
\(\Rightarrow\frac{QF}{QH}=\frac{KF}{HM}=1\Rightarrow QF=QH\)
=> MN đi qua trung điểm Q của HF
a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)DF//AC hay DF//EC(1)
Lại có, xét \(\Delta ABC\): \(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) ED//BC hay ED//CF(2)
Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành
b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)
Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) EF//AB
Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)
Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)
\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE
c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)
Mà EA=DF (EDFA là hình chữ nhật)
\(\Rightarrow EK=DF\)
Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân
a) Để chứng minh tứ giác AEDF là hình chữ nhật, ta cần chứng minh các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.
Ta có:
- AD là đường cao của tam giác ABC, nên AEDF là hình chữ nhật nếu và chỉ nếu AE = DF.
- AE là hình chiếu của D lên AB, nên AE = DD' (với D' là hình chiếu của D lên AB).
- DF là hình chiếu của D lên AC, nên DF = DD'' (với D'' là hình chiếu của D lên AC).
Vậy để chứng minh AEDF là hình chữ nhật, ta cần chứng minh DD' = DD''.
Ta có tam giác DDD' và tam giác DDD'' là hai tam giác vuông có cạnh chung DD'. Vì vậy, ta có:
- DD' = DD'' (cạnh huyền của hai tam giác vuông bằng nhau)
- Góc DDD' = Góc DDD'' = 90 độ (góc vuông)
Vậy tam giác DDD' và tam giác DDD'' là hai tam giác vuông cân có cạnh chung DD'. Do đó, ta có DD' = DD''.
Vậy AE = DF, tứ giác AEDF là hình chữ nhật.
b) Gọi I là trung điểm của EF. Ta cần chứng minh A, I, D thẳng hàng.
Vì I là trung điểm của EF, nên AI là đường trung bình của tam giác AEF. Do đó, ta có AI song song với đường cao DD' của tam giác ABC.
Vì AEDF là hình chữ nhật, nên AE song song với DF. Khi đó, ta có AI song song với EF.
Vậy ta có AI song song với cả DD' và EF. Do đó, A, I, D thẳng hàng.
Vậy ta đã chứng minh được A, I, D thẳng hàng.
*Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
Tứ giác AEDF có \(\widehat{A}=\widehat{E}=\widehat{F}=90\)nê AEDF là hình chữ nhật.
\(\Rightarrow\hept{\begin{cases}AE=DF\\AF=DE\end{cases}\Rightarrow\hept{\begin{cases}AE.EB=DF.EB\\\end{cases}}}\)