Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AFCD có
E là trung điểm chung của AC và FD
=>AFCD là hình bình hành
b: EG//AB
AB\(\perp\)AC
Do đó: EG\(\perp\)AC
c:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
giúp mình câu này nhé,ghi rõ ra cho mình luôn và cả hình nữa,cảm ơn mọi người
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.
a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.
b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:
- AD = DC (vì D là trung điểm của BC)
- AE = EB (vì E là trung điểm của AB)
- AF = FC (vì F là trung điểm của AC)
Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.
c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.
- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.
- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.
Do đó, ta có AM = AN.
- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)
- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)
Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.
Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.
Vậy ta đã chứng minh được M đối xứng với N qua A.
a: Xét ΔABC có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔABC
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Ta có: FE//AB
D\(\in\)AB
Do đó: FE//AD và FE//BD
Ta có: \(FE=\dfrac{AB}{2}\)
\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
Do đó: FE=AD=DB
Xét tứ giác ADEF có
FE//AD
FE=AD
Do đó: ADEF là hình bình hành
Hình bình hành ADEF có \(\widehat{FAD}=90^0\)
nên ADEF là hình chữ nhật
=>AE=DF
Xét tứ giác BEFD có
FE//BD
FE=BD
Do đó: BEFD là hình bình hành
b: Xét ΔABC có
D,F lần lượt là trung điểm của AB,AC
=>DF là đường trung bình của ΔABC
=>DF//BC và DF=BC/2
Ta có: DF//BC
E,H\(\in\)BC
Do đó: DF//EH
Ta có: ΔHAC vuông tại H
mà HF là đường trung tuyến
nên HF=FA
mà FA=ED(ADEF là hình chữ nhật)
nên HF=ED
Xét tứ giác EHDF có EH//DF
nên EHDF là hình thang
Hình thang EHDF có ED=HF
nên EHDF là hình thang cân
c: Xét tứ giác AECI có
F là trung điểm chung của AC và EI
=>AECI là hình bình hành
=>AI//CE
mà E\(\in\)CB
nên AI//CB
Xét tứ giác BIKE có
F là trung điểm chung của BK và IE
=>BIKE là hình bình hành
=>IK//EB
mà E\(\in\)BC
nên IK//BC
Ta có: AI//BC
IK//BC
AI,IK có điểm chung là I
Do đó: A,I,K thẳng hàng
Xét ΔCDB có CN/CD=CP/CB
nên NP//BD và NP=DB/2
Xét ΔEDB có EM/ED=EQ/EB
nên MQ//BD và MQ=BD/2
=>NP//MQ và NP=MQ
Xét ΔDEC có DN/DC=DM/DE
nên MN//EC
=>MN vuông góc với AB
=>MN vuông góc với NP
Xét tứ giác MNPQ có
NP//MQ
NP=MQ
MN vuông góc với NP
Do đó: MNPQ là hình chữ nhật
=>M,N,P,Q cùng thuộc 1 đường tròn
=>MP=NQ