K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

gọi cái trên là T6 nhá

t nguyên <=> x^2-x+1 \(\in\)Ư(7)

=>\(\hept{\begin{cases}x^2-x+1=1\\x^2-x+1=7\end{cases}}< =>\hept{\begin{cases}x=0\\x=-2\end{cases}}\)thêm nữa \(\hept{\begin{cases}x^2-x+1=-1\\x^2-x+1=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=vn\\x=vn\end{cases}}}\)(vn là vô nghịm)

1 tháng 2 2017

I love you

17 tháng 10 2017

\(\Rightarrow x^2-x+1\inƯ\left(7\right)=\left\{1,-1,7,-7\right\}\)

đến đây thay vào giải phương trình là xong

24 tháng 4 2017

10x^2 - 7x - 5 2x - 3 5x + 4 10x^2 - 15x - 8x - 5 8x - 12 7 -

Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên

\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)

\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }

Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)

           2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)

           2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)

           2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)

Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên 

NM
9 tháng 1 2021

để \(\frac{7}{x^2-x+1}\in Z\Leftrightarrow x^2-x+1\inƯ_7=\left\{\pm1;\pm7\right\}\)

nếu \(x^2-x+1=-7\Leftrightarrow x^2-x+8=0\left(vo nghiem\right)\)

nếu \(x^2-x+1=-1\Leftrightarrow x^2-x +2=0\left(vo nghiem\right)\)

nếu \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases} }\)

nếu \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow\hept{\begin{cases}x=3\\x=-2\end{cases} }\)

vậy \(x\in\left\{-2,0,1,3\right\}\)

10 tháng 1 2021

Để \(\frac{7}{x^2-x+1}\)ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

hay \(7⋮\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Xét từng trường hợp : 

TH1 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=\pm\frac{1}{2}\)

\(\Leftrightarrow x_1=\frac{1}{2}+\frac{1}{2}=1;x_2=-\frac{1}{2}+\frac{1}{2}=0\)( chọn )

TH2 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=-1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{7}{4}\)ko thỏa mãn 

tương tự 2 trường hợp còn lại 

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

29 tháng 9 2019

=[3x(x2-16)+44(x2-16)+44.16+x-4+3]/(x-4)

=3x(x+4)+44(x+4)+1+(44.16+3)/(x-4)

để là giá trị nguyên thì 44.16+3=707 chia hết cho x-4 

vậy x-4 phải là ước của 707

707=7.101 => x-4=7 hoặc x-4=101

=>x =11 hoăc x=105

13 tháng 5 2016

Để x-9/x+2 là số nguyên thì x-9 \(⋮\)x+2

<=>x+2-11\(⋮\)x+2

Mà x+2 \(⋮\)x+2=>11\(⋮\)x+2

=>x+2EƯ(11)={-1;1;-11;11}

=>xE{-3;-1;-13;9}

13 tháng 5 2016

Để x-9/x+2 có giá trị là một số nguyên thì ta có:

     x-9 chia hết cho x+2

=> x+2-11 chia hết cho x+2

Mà x+2 chia hết cho x+2 => 11 chia hết cho x+2

                                           => x+2 ϵ Ư(11) = {-1;1;-11;11}

                                           =>    x ϵ { -3;-1;-13;9 }

 

20 tháng 12 2020

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)