(P): y=x^2 (d) :y=2x-1. TÌm A thuộc (P);B thuộc (d) sao cho AB min
GIẢI GIÙM mơn nha !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy - 2x + y = -2
=> x(y - 2) + (y - 2) = -4
=> (x + 1)(y - 2) = -4
=> x + 1;y - 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}
Lập bamhr :
x + 1 | 1 | -1 | 2 | -2 | 4 | -4 |
y - 2 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1 | -3 | 3 | -5 |
y | -2 | 6 | 0 | 4 | 1 | 3 |
Vậy ...
b) -xy + 3x - y = 1
=> -x(y - 3) - (y - 3) = 4
=> (-x - 1)(y - 3) = 4
=> -x - 1; y - 3 Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
-x - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
y - 3 | 4 | -4 | 2 | -2 | 1 | -1 |
x | -2 | 0 | -3 | 1 | -5 | 3 |
y | 7 | -1 | 5 | 1 | 4 | 2 |
Vậy ...
a,Vì x,y thuộc Z nên \(\hept{\begin{cases}x+3\\y+1\end{cases}\in Z}\)
\(\Rightarrow\left(x+3\right);\left(y+1\right)\inƯ\left(3\right)\)
\(\Rightarrow\left(x+3\right);\left(y+1\right)\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x+3=1\Rightarrow x=-2\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=-1\Rightarrow x=-4\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=3\Rightarrow x=0\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=-3\Rightarrow x=-6\\y+1=-1\Rightarrow x=-2\end{cases}}\)
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
Bạn nói qua thôi vì dài
A, bạn lập bẳng ra x,y thuộc ước của -21
B,Bạn cũng lập bảng thuộc ước của -35.Lưu Ý:(2x-1) là số lẻ còn (2x+10) lẻ nốt
c,Phân tích khi mở ngoặc chuyển vế sao cho ra kết quả
D, hai trường hợp xảy ra.TH1:Vế trái bằng 0:TH2:Vế phải bằng 0
Độ dài là min khi (nếu có thể) độ dài đó là 0.
Nhận thấy điều này xảy ra được vì (P) và (d) cắt nhau tại \(A\left(1;1\right)\) và \(B\) trùng với \(A\).
Giải:
\(!AB!=\sqrt{\left(x_a-x_b\right)^2+\left(y_a+y_b\right)^2}\)\(=\sqrt{\left(x_a-x_b\right)^2+\left(x_a^2-2x_b+1\right)^2}=D\)
Bài toán trở thành: tìm giá trị xa=a và xb=b sao cho D đạt GTNN
Hiển nhiên \(D\ge0\)đẳng thức xẩy ra khi \(\hept{\begin{cases}a-b=0\\a^2-2b+1=0\end{cases}}\)\(\left(b-1\right)^2=0\Rightarrow b=1\) Nghiệm duy nhất a=b=1
KL
A(1,1) trùng B(1,1)