K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

ve hinh di roi minh lam

minh ve mai cha duoc

25 tháng 1 2017

bạn làm giúp mình mấy câu hỏi phía dưới lúc nãy mình mới gửi lên trước đi. bài này từ từ cx đc.

2 tháng 4 2017

Giải

B H C K A x D

Xét \(\Delta ABH\) ta có:

\(\widehat{HAx}=\widehat{ABH}+90^0=2\widehat{B_2}+90^0\)

Ta lại có \(\widehat{HAx}=2\widehat{A_2}.\) Do đó:

\(2\widehat{A_2}=2\widehat{B_2}+90^0\Rightarrow\widehat{A_2}=\widehat{B_2}+45^0\left(1\right)\)

Mặt khác xét \(\Delta ABD\) ta có:

\(\widehat{A_2}=\widehat{B_2}+\widehat{D_1}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\widehat{D_1}=45^0\)

\(\Rightarrow\widehat{ADB}=45^0\)

11 tháng 3 2018

Xét ΔABH ta có: = + 90 0 = 2 + 90 0 Ta lại có  = 2 .

 Do đó: 2 = 2 + 90 0 ⇒ = + 45 0 1

Mặt khác xét ΔABD ta có: = + 2 Từ  1  và  2  suy ra  = 45 0

⇒ = 45 0 

:3

15 tháng 3 2020

^AHC = 900 và ^AHD = 450 suy ra HD là phân giác ngoại tại đỉnh H của \(\Delta\)ABH

Kết hợp với BD là đường phân giác trong tại đỉnh B suy ra AD là phân giác của ^HAx (2 đường phân giác ngoài và một đường phân giác trong đồng quy)

Ta có: ^HAx = 900 + ^ABH (t/c góc ngoài)

=> \(2\widehat{CAx}=90^0+2\widehat{ABD}\)

=> ^CAx  = 450 + ^ABD

Mà  ^CAx  = ^ADB + ^ABD (t/c góc ngoài) nên suy ra ^ADB = 450

Vậy \(\widehat{ADB}=45^0\)

12 tháng 4 2019

\(135^o\)

20 tháng 3 2016

A B C H E

20 tháng 3 2016

 giải giúp với .........

17 tháng 9 2023

a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).

Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ  - 70^\circ  - 70^\circ  = 40^\circ \).

b) Xét tam giác vuông ADB và tam giác vuông AEC có:

     AB = AC (tam giác ABC cân);

     \(\widehat A\) chung.

Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).

c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.

Xét hai tam giác vuông AFB và AFC có:

     AB = AC (tam giác ABC cân);

     AF chung.

Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).

Vậy tia AH là tia phân giác của góc BAC.