K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

TA có 

\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}\)

\(=\frac{ab+ac-ab-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)

vì a>b => a-b > 0 => c(a-b) > 0 

=> \(\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)

\(=>\frac{a}{b}-\frac{a+c}{b+c}>0\)

\(=>\frac{a}{b}>\frac{a+c}{b+c}\)

=> đpcm

b)   Ta có a+b < a+b+c ; b+c < a+b+c ; c+a < a+b+c

\(=>\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)        (1)

Lại có 

Áp dùng câu a ta có a< a+b ; b< b+c ; c<c+a

=> \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)     (2) 

Từ (1) và (2) => dpcm

25 tháng 1 2017

- Cậu ơi, đpcm là cái gì???

17 tháng 4 2015

Ta có : 

A > a/a+b+c + b/a+b+c + c/ a+b+c = 1 

=> A>1                                                                                        1/

B = b/a+b + c/b+c + a/c+a < b/a+b+c + c/a+b+c + a/a+b+c=1

=>B>1

Mà A+B = 3 và B>1 nên : 

=> A < 2                                                                                       2/

Từ 1/ và 2/ , 

=> 1<A<2 (đpcm)

 

4 tháng 2 2016

điểm M không thuộc b. điểm N thuộc b. nhé

15 tháng 6 2016

a) do a/b>c/d (b>0,d>0)

=> ad>bc => ad+ab>bc+ab

a.(d+b)>b(c+a)   => a/b=c+a/b+d (1)

tương tự cộng với cd là xong

b) 1/3<15/48,14/48,13/68<1/4

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

6 tháng 5 2016

ta có:

\(\frac{a}{a+b}=\frac{a\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\frac{b}{b+c}=\frac{b\left(a+b\right)\left(c+a\right)}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)

\(\frac{c}{c+a}=\frac{c\left(b+c\right)\left(a+b\right)}{\left(c+a\right)\left(b+c\right)\left(a+b\right)}\)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a\left(b+c\right)\left(c+a\right)+b\left(a+b\right)\left(c+a\right)+c\left(b+c\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

dễ thấy phần tử của phép tính trên lớn hơn mẫu => phép tính trên cho kết quả lớn hơn 1

6 tháng 5 2016

Ta thấy : a/(a+b) > a/(a+b+c) 

b/(b+c) > b/(a+b+c)

c/(c+a)>c/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a)> a/(a+b+c) +b/(a+b+c) +c/(a+b+c)=(a+b+c)/(a+b+c) = 1 (đpcm)

14 tháng 3 2016

Giúp mình nhanh nha Mình  cho