cho tứ giác ABCD có AB < AD, AC là tia phân giác góc BAD, BC = CD. Ch ứng minh rằng góc BAD + góc BCD = 180 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\widehat{xAD}+\widehat{BAD}=180\\\widehat{ABC}+\widehat{BAD}=180\end{cases}\Leftrightarrow\widehat{xAD}=\widehat{ABC}\Rightarrow}\)AD//BC (1)
Tổng các góc trong tứ giác là 360
\(\widehat{ABC}+\widehat{BAD}+\widehat{BCD}+\widehat{CDA}=180+\widehat{BCD}+\widehat{CDA}=360\)\(\Rightarrow\widehat{BCD}+\widehat{CDA}=180\)
mặt khác : \(\widehat{ADy}+\widehat{CDA}=180\)\(\Rightarrow\widehat{BCD}=\widehat{yDA}\)=> \(\widehat{yDA}=\widehat{BAD}\)=> AB//CD (2)
từ 1,2 có ABCD là hình bình hành và có đường chéo AC là đường phân giác của \(\widehat{BAD}\)nên ABCD là hình thoi => BC =AD
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên A1ˆ=C1ˆA1^=C1^ (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vẽ hình :