K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

nối D với B. theo tính chết đường trung bình thì QM//NP và QM=NP(=1/2 DB)

tương tự nối A với C => MN//QP và MN=PQ(=1/2 AC) 

vì là hình thang cân => AC=DB => QM=NP=MN=PQ => tg MNPG là hình thoi

b) QN là đtb của hình thang => QN=1/2 (AB+DC)

từ A kẻ AH vuông góc DC => AH vuông góc AN (QN//DC) và AH vuông góc AB (AB//DC)

S hình thang =30 <=> \(\frac{\left(AB+DC\right).AH}{2}=30\Rightarrow AB+DC=\frac{60}{AH}\)

=> QN=30/AH.

MP vuông góc QN ( đường chéo hình thoi) =>   tứ giác AHPM là hình chữ nhật => AH=MP

S hình thoi QMNP=\(\frac{1}{2}MP.\frac{30}{AH}=\frac{1}{2}.AH.\frac{30}{AH}=15\)CM^2

 

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Để mNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

Để MNPQ là hình thoi thì MN=MQ

=>AC=BD

c: BD=3/2*AC=30cm

=>MQ=BD/2=15cm; MN=AC/2=10cm

SMNPQ=15*10=150cm2

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có 

Q là trung điểm của AD(gt)

P là trung điểm của CD(gt)

Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có 

MN//PQ(cmt)

MN=PQ(cmt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b)

Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)

Hình bình hành MNPQ trở thành hình vuông khi 

3 tháng 1 2017

bik lm câu a,b r mak ko bik lm câu c 

chỉ câu c với

4 tháng 1 2017

mình chịu

31 tháng 5 2018

A B C N Q D P

31 tháng 5 2018

Giúp mk giải câu c) với >< Mình đang cần gấp!!! 

23 tháng 10 2016

a) Xét tam giác ABC có

M là trung điểm của AB

N là trung điểm của BC

=>MN là đường tb của yam giác ABC

=>MN//AC và MN=1/2 BC (1)

cm tg tự => QP//AC và QP =1/2 AC (2)

Từ (1) và (2) => MNPQ là hbh

16 tháng 12 2016

cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB.BC,CD,DA

tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông 

30 tháng 12 2021

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành