K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2021

\(6xy-4x+3y=-53\)

\(x\left(6y-4\right)+3y=-53\)

\(x\left(6y-4\right)+6y-4=2\times\left(-53\right)-4\)

\(x\left(6y-4\right)+6y-4=\left(-110\right)\)

\(\left(6y-4\right)\left(x+1\right)=\left(-110\right)\)

\(\Rightarrow6y-4;x+1\in\text{Ư}\left(-110\right)=\left\{\pm1;\pm2;\pm5;\pm10;\pm11;\pm22;\pm55;\pm110\right\}\)

Mà 6y là số chẵn => 6y + 4 là số chẵn 

=> 6y + 4 là ước chẵn của ( - 110 ) 

\(\Rightarrow6y+4\in\left\{\pm2;\pm10;\pm22;\pm100\right\}\)

Ta có bảng :

( Bạn tự làm nốt nhé, mk bận òi )

16 tháng 5 2018

pt <=> 3y(2x + 1) - 4x - 2 = -55

    <=> 3y(2x + 1) - 2(2x + 1) = -55

   <=> (3y - 2)(2x + 1) = -55 = (-1).55 = 55.(-1) = (-5).11 = 11.(-5)

                                            = (-55).1 = 1.(-55) = (-11).5 = 5.(-11)

Thay (3y - 2) và (2x + 1) vào 8 trường hợp trên là tìm được x,y 

tất nhiên phải xét xem x,y có là số nguyên hay không 

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

10 tháng 9 2016

<=> (z2 + 4z+4 )+(2x2-4x +2 )+(3x2 +6xy +3y2)=0 
<=> (z+2)2 +2(x-2)2 +3(x+y)2=0 
ba hằng đẳng thức=> ta được: z+2 =0 và x-2=0 và x+y= 0 
=> z=-2, x=2 , y= -2 

a: x-y+xy-9=0

=>x+xy-y-1=8

=>(y+1)(x-1)=8

=>(x-1;y+1) thuộc {(1;8); (8;1); (-1;-8); (-8;-1); (2;4); (4;2); (-2;-4); (-4;-2)}

=>(x,y) thuộc {(2;7); (9;0); (0;-9); (-7;-2); (3;3); (5;1); (-1;-5); (-3;-3)}

b: xy-3y-5x+10=0

=>y(x-3)-5x+15=5

=>(x-3)(y-5)=5

=>(x-3;y-5) thuộc {(1;5); (5;1); (-1;-5); (-5;-1)}

=>(x,y) thuộc {(4;10); (8;6); (2;0); (-2;4)}

c: 6xy-3x-2y-1=0

=>3x(2y-1)-2y+1-2=0

=>(2y-1)(3x-1)=2

=>(3x-1;2y-1) thuộc {(2;1); (-2;-1)}

=>(x,y) thuộc {(1;1)}

Em cảm ơn ạ