Cho A = 3/5 + 11/13 + 23/25 + ... + 19799/19801. CM: A>98.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=3/(12+22 )+ 11/(22+32)+....+19799/(992+1002)
Suy ra C có 99 số .
C=(1-2/5)+(1-2/13)+...+(1-2/19801)
C=99-(2/5+2/13+...+2/19801)
bây giờ chúng ta phải chứng minh biểu thức trong ngoặc nhỏ hơn 1.
Xét B=2/5+2/13+...+2/19801
B<2/4+2/12+...+2/19800
B<1/2+1/6+...+1/9900
B<1/1x2+1/2x3+...+1/99x100
B<1-1/100<1
Vậy B < 1 thì C> 99-1=98
a ) \(-\frac{13}{30}+\frac{11}{20}-\frac{7}{15}\)
\(=-\frac{26}{60}+\frac{33}{60}-\frac{28}{60}\)
\(=\frac{-26+33-28}{60}=-\frac{7}{20}\)
b ) \(-\frac{5}{72}:\left(\frac{3}{8}.\frac{7}{9}\right)\)
\(=-\frac{5}{72}:\frac{3.7}{8.9}\)
\(=-\frac{5}{72}:\frac{7}{24}\)
\(=-\frac{5}{72}.\frac{24}{7}=-\frac{5}{21}\)
a) \(\frac{-13}{30}+\frac{11}{20}-\frac{7}{15}=\frac{-26}{60}+\frac{33}{60}-\frac{28}{60}=-\frac{21}{60}=-\frac{7}{20}\)
b) \(\frac{-5}{72}:\left(\frac{3}{8}.\frac{7}{9}\right)=\frac{-5}{72}:\frac{7}{24}=-\frac{5}{21}\)
c) \(\frac{-23}{25}.\frac{10}{13}+\frac{-23}{25}.\frac{3}{13}+\frac{-27}{25}\)
\(=\frac{-23}{25}.\left(\frac{10}{13}+\frac{3}{13}\right)+\frac{-27}{25}\)
\(=\frac{-23}{25}+\frac{-27}{25}\)
\(=\frac{-50}{25}=-2\)
a)
\(\begin{array}{l}A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\left( { - 4,6} \right)\\A = \frac{5}{{11}}.\left( {\frac{{ - 3}}{{23}}} \right).\frac{{11}}{5}.\frac{{ - 23}}{5}\\A = \frac{{5.\left( { - 3} \right).11.\left( { - 23} \right)}}{{11.23.5.5}}\\A = \frac{3}{5}\end{array}\)
b)
\(\begin{array}{l}B = \left( {\frac{{ - 7}}{9}} \right).\frac{{13}}{{25}} - \frac{{13}}{{25}}.\frac{2}{9}\\B = \frac{{13}}{{25}}.\left( {\frac{{ - 7}}{9} - \frac{2}{9}} \right)\\B = \frac{{13}}{{25}}.(-1)\\B = \frac{{-13}}{{25}}.\end{array}\)
a) \(\dfrac{7}{30}+\dfrac{\left(-12\right)}{37}+\dfrac{23}{30}+\dfrac{\left(-25\right)}{37}=\left(\dfrac{7}{30}+\dfrac{23}{30}\right)+\left(\dfrac{-12}{37}+\dfrac{-25}{37}\right)=1+\left(-1\right)=0\)
b) \(\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}=\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)=-\dfrac{5}{11}\)
c) \(\dfrac{\left(-5\right)}{7}\cdot\dfrac{3}{13}-\dfrac{5}{7}\cdot\dfrac{10}{13}+1\dfrac{5}{7}=\dfrac{5}{7}\cdot\dfrac{-3}{13}-\dfrac{5}{7}\cdot\dfrac{10}{13}+\dfrac{12}{7}=\dfrac{5}{7}\cdot\left(\dfrac{-3}{13}-\dfrac{10}{13}\right)+\dfrac{12}{7}=\dfrac{5}{7}\cdot\left(-1\right)+\dfrac{12}{7}=\left(-\dfrac{5}{7}\right)+\dfrac{12}{7}=\dfrac{7}{7}=1\)
Bài 1:
a; \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{7}{21}\) + (- \(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{1}{3}\) -\(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{10}{36}\)) + (\(\dfrac{8}{19}\) + \(\dfrac{11}{19}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{5}{18}\)) + \(\dfrac{19}{19}\) - 0 - \(\dfrac{5}{8}\)
= 0 + 1 - \(\dfrac{5}{8}\)
= \(\dfrac{3}{8}\)
b; \(\dfrac{1}{13}\) + (\(\dfrac{-5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\)) - (\(\dfrac{12}{17}\) - \(\dfrac{5}{18}\) + \(\dfrac{7}{5}\))
= \(\dfrac{1}{13}\) - \(\dfrac{5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{12}{17}\) + \(\dfrac{5}{18}\) - \(\dfrac{7}{5}\)
= (\(\dfrac{1}{13}\) - \(\dfrac{1}{13}\)) + (\(\dfrac{12}{17}\) - \(\dfrac{12}{17}\)) + (-\(\dfrac{5}{18}\) + \(\dfrac{5}{18}\)) - \(\dfrac{7}{5}\)
= 0 + 0 + 0 - \(\dfrac{7}{5}\)
= - \(\dfrac{7}{5}\)
Bài 1 c;
\(\dfrac{15}{14}\) - (\(\dfrac{17}{23}\) - \(\dfrac{80}{87}\) + \(\dfrac{5}{4}\)) + (\(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\))
= \(\dfrac{15}{14}\) - \(\dfrac{17}{23}\) + \(\dfrac{80}{87}\) - \(\dfrac{5}{4}\) + \(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\)
= (\(\dfrac{15}{14}-\dfrac{15}{14}\)) + (\(-\dfrac{17}{23}+\dfrac{17}{23}\)) - (\(\dfrac{5}{4}\) - \(\dfrac{1}{4}\)) + \(\dfrac{80}{87}\)
= 0 + 0 - 1 + \(\dfrac{80}{87}\)
= - \(\dfrac{7}{87}\)