K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADE có AD=AE

nên ΔADE cân tại A

Xét ΔABC có 

AD/AB=AE/AC

Do đó: DE//BC

b: Xét ΔAMB và ΔAMC có 

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

17 tháng 1 2022

Cảm ơn bạn nhiều.

21 tháng 6 2021

giúp mik nhanh câu c dc khum ạ

2 câu kia mik xong r

cảm ơn các bạn

12 tháng 3 2020

 Mình giải hơi dài không biết có đúng không. Bạn tự vẽ hình nha!

Gọi F là trung điểm của AD. I là trung điểm của AC. Ta qui về chứng minh B,F,E thẳng hàng

Trước hết ta chứng minh bài toàn phụ: Từ S ngoài (O) kẻ 2 tiếp tuyến SC,SB và cát tuyến SDA, gọi M là giao của SO với BC thì BC là phân giác của góc AMD (bạn tự chứng mình nha).

Áp dụng vào bài toán ta có: AOMD nội tiếp \(\Rightarrow\widehat{AOD}=\widehat{AMD}\Leftrightarrow\frac{1}{2}\widehat{AOD}=\frac{1}{2}\widehat{AMD}\Leftrightarrow\widehat{ACD}=\widehat{AMB}\)

mà \(\widehat{ACD}+\widehat{ABD}=180^o,\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{ABD}=\widehat{AMC}\)

Xét (O) ta có: \(\widehat{ADB}=\widehat{ACB}\)

Suy ra \(\Delta ABD\)đồng dạng với \(\Delta AMC\)(g,g)  mà F là trung điểm AD, I là trung điểm AC suy ra tam giác ABF đồng dạng với tam giác AMI (c.g.c) suy ra \(\widehat{ABF}=\widehat{AMI}\)

Dễ thấy: \(\widehat{OMI}+\widehat{OIC}=90^o+90^o=180^o\)suy ra OMCI nội tiếp suy ra \(\widehat{MIC}=\widehat{MOC}=\frac{1}{2}\widehat{BOC}=\widehat{BAC}\Rightarrow\widehat{AIM}=\widehat{BDC}\)

Kết hợp với \(\widehat{BCD}=\widehat{BAD}=\widehat{MAC}\)(do tam giác ABD đồng dạng với tam giác AMC) suy ra tam giác AIM đồng dạng với tam giác CDB(g.g) suy ra \(\widehat{ABF}=\widehat{AMI}=\widehat{CBD}=\widehat{CAD}=\widehat{ACE}\left(AD//CE\right)=\widehat{ABE}\)suy ra B,F,E thẳng hàng hay BE đi qua trung điểm AD (đpcm)

a: Xét ΔDAB và ΔDEM có

DA=DE

góc ADB=góc EDM

DB=DM

=>ΔDAB=ΔDEM

b: ΔDAB=ΔDEM

=>góc DAB=góc DEM

=>AB//ME