Tìm m để hàm số y=(3m2 +5m+2 )x-5m+1 đồng biến trên R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hơi phân biệt giới tính quá đấy, có con trai cũng thích công chúa sinh đôi mà
huống chi mk thik naruto
Với điều kiện m ≥ 0 và m ≠ 5 thì m + 5 > 0. Do đó, điều kiện để hàm số đã cho là hàm số bậc nhất đồng biến trên R là: m - 5 > 0, suy ra m > 5 ⇔ m > 5.
Hàm số y = ( m 2 – 1 ) x + 5 m là hàm số đồng biến khi m 2 – 1 > 0
⇔ ( m – 1 ) ( m + 1 ) > 0
TH1: m − 1 > 0 m + 1 > 0 ⇔ m > 1 m > − 1 ⇔ m > 1
TH2: m − 1 < 0 m + 1 < 0 ⇔ m < 1 m < − 1 ⇔ m < − 1
Vậy m > 1 m < − 1
Đáp án cần chọn là: D
Chọn A
Ta có.
.
Hàm số đồng biến trên khi .
Ta có
.
+TH1
.
+TH2
.
Vậy .
a) y = –( m 2 + 5m) x 3 + 6m x 2 + 6x – 5
y′ = –3( m 2 + 5m) x 2 + 12mx + 6
Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.
Ta xét các trường hợp:
+) m2 + 5m = 0 ⇔
– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.
– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .
+) Với m 2 + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu
Δ' = 36 m 2 + 18( m 2 + 5m) ≤ 0 ⇔ 3 m 2 + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0
– Với điều kiện đó, ta có –3( m 2 + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.
Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.
b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:
y′(1) = –3 m 2 – 3m + 6 = 0 ⇔
Mặt khác, y” = –6( m 2 + 5m)x + 12m
+) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.
+) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.
Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.
y = –( m 2 + 5m) x 3 + 6m x 2 + 6x – 5
y′ = –3( m 2 + 5m) x 2 + 12mx + 6
Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.
Ta xét các trường hợp:
+) m 2 + 5m = 0 ⇔
– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.
– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .
+) Với m 2 + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu
∆ ' = 36 m 2 + 18( m 2 + 5m) ≤ 0 ⇔ 3 m 2 + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0
– Với điều kiện đó, ta có –3( m 2 + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.
Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.
Hàm số có dạng y = ax + b đồng biến nếu a > 0; nghịch biến nếu a < 0
(Đồng biến nghĩa là: Nếu x1 < x2 thì y1 < y2) (Em xem lại trong SGK 9 có nhắc)
Để hàm số đồng biến trên R <=> 3m2 + 5m + 2 > 0
<=> 3m2 + 3m + 2m + 2 > 0
<=> 3m(m +1) + 2.(m+1) > 0
<=> (3m +2).(m +1) > 0
=> 3m + 2 và m + 1 cùng dấu
TH1: 3m +2 > 0 và m + 1 > 0
=> m > -2/3 và m > -1 => m > -2/3
TH2: 3m + 2 < 0 và m + 1 < 0
=> m < -2/3 và m < -1 => m < -1
Vậy với m > -2/3 hoặc m < -1 thì hàm số đồng biến