Tìm n thuộc Z, biết:
n-7 chia hết cho 2n+3
Mình đang gấp, mình sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+5 chia hết cho 2n-1
=> 2(n+5) chia hết cho 2n-1
<=> 2n+10 chia hết cho 2n-1
<=> 2n-1+11 chia hết cho 2n-1
Mà 2n-1 chia hết cho 2n-1 . Suy ra 11 chia hết cho 2n-1
suy ra 2n-1 thuộc ước của 11. ta có bẳng sau;
2n-1 1 -1 11 -11
n 1 0 6 -5
vậy................
n^2-2 chia hết (n+3)
n(n+3)-3n-2 chia hết cho (n+3)
n(n+3)-3(n+3)+7 chia hết cho (n+3)
=> n+3 là ước của 7
n+3={-7,-1,1,7)
n={-10,-4,-2,4)
n^2-2 chia hết cho (n+3)
n(n+3 )-3n -2 chia hết (n +3)
n(n+3 )-3(n+3 )+7 chia het (n + 3)
suy ra n+3 là ước của 7
n+3 =(-7-1,1,7)
n= (-10,-4-2,4)
ủng hộ mikvoi
\(n+3⋮2n+2\)
=>\(2n+6⋮2n+2\)
=>\(2n+2+4⋮2n+2\)
=>\(4⋮2n+2\)
=>\(2n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(2n\in\left\{-1;-3;0;-4;2;-6\right\}\)
=>\(n\in\left\{-\dfrac{1}{2};-\dfrac{3}{2};0;-2;1;-3\right\}\)
mà n nguyên
nên \(n\in\left\{0;-2;1;-3\right\}\)
0 với -2 sai nha bạn
0+3 chia hết cho 2.0 +2?
1 chia hết cho -2?
Nhưng nếu không được thì tui ko hiểu sao tính ra được cái đó
a) Ta có: n + 7 \(\in\)Ư(n + 8)
<=> n + 8 \(⋮\)n + 7
<=> (n + 7) + 1 \(⋮\)n + 7
<=> 1 \(⋮\)n + 7
<=> n + 7 \(\in\)Ư(1) = {1; -1}
Lập bảng:
n + 7 | 1 | -1 |
n | -6 | -8 |
Vậy ...
b) Ta có: 2n - 9 = 2(n - 5) + 1
Do n - 5 \(⋮\)n - 5 => 2(n - 5) \(⋮\)n - 5
Để 2n - 9 \(⋮\)n - 5 => 1 \(⋮\)n - 5 => n - 5 \(\in\)Ư(1) = {1; -1}
Lập bảng: tương tự
c) Ta có: n2 - n - 1 = n(n - 1) - 1
Do n - 1 \(⋮\)n - 1 => n(n - 1) \(⋮\)n - 1
Để n2 - n - 1 \(⋮\)n - 1 thì 1 \(⋮\)n - 1 => n - 1 \(\in\)Ư(1) = {1; -1}
Lập bảng: tương tự
d) Ta có: n2 + 5 = n(n + 1) - (n + 1) + 6 = (n - 1)(n + 1) + 6
Tương tự
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
Ta có : 2n - 7 = 2n - 1 - 8
Mà 2n - 1 chia hết cho n - 1
=> 8 chia hết cho n-1
=> n-1 \(\in\)Ư(8)
Sau đó bạn làm tương tự nha
\(\Rightarrow\)2(n-7) - (2n+3) \(⋮\)2n+3
\(\Rightarrow\)(2n-14) - (2n+3) \(⋮\)2n+3
\(\Rightarrow\)2n - 14 - 2n - 3 \(⋮\)2n+3
\(\Rightarrow\)-17 \(⋮\)2n+3
\(\Rightarrow2n+3\inƯ\left(-17\right)=\left(1;-1;17;-17\right)\)
ta có bảng sau :
2n+3 1 -1 17 -17
n -1 -2 7 -10
mà \(n\in Z\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
theo bài ra ta có:\
\(\left(n-7\right)⋮\left(2n+3\right)\)
=> (n - 7) - (2n+3) \(⋮2n+3\)
=> \(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
=> \(2n-4-2n-3⋮2n+3\)
=> \(-7⋮2n+3\)
=> 2n+3 E Ư(-7) = { 1;-1;7;-7 }
ta có bảng sau:
vậy n ={ -1;-2;2;-5 }