K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

\(\Rightarrow\)2(n-7) - (2n+3) \(⋮\)2n+3

\(\Rightarrow\)(2n-14) - (2n+3) \(⋮\)2n+3

\(\Rightarrow\)2n - 14 - 2n - 3  \(⋮\)2n+3

\(\Rightarrow\)-17                   \(⋮\)2n+3

\(\Rightarrow2n+3\inƯ\left(-17\right)=\left(1;-1;17;-17\right)\)

ta có bảng sau :

2n+3           1                      -1                            17                      -17

n                -1                     -2                             7                       -10

mà \(n\in Z\)

\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)

12 tháng 1 2017

theo bài ra ta có:\

\(\left(n-7\right)⋮\left(2n+3\right)\) 

=> (n - 7) - (2n+3) \(⋮2n+3\) 

=> \(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\) 

=> \(2n-4-2n-3⋮2n+3\) 

=> \(-7⋮2n+3\) 

=> 2n+3 E Ư(-7) = { 1;-1;7;-7 }

ta có bảng sau:

2n+31-17-7
2n-2-44-10
n-1-22-5

vậy n ={ -1;-2;2;-5 }

12 tháng 1 2017

n+5 chia hết cho 2n-1

=> 2(n+5) chia hết cho 2n-1

<=> 2n+10 chia hết cho 2n-1

<=> 2n-1+11 chia hết cho 2n-1

Mà 2n-1 chia hết cho 2n-1 . Suy ra 11 chia hết cho 2n-1

suy ra 2n-1 thuộc ước của 11. ta có bẳng sau; 

2n-1     1      -1      11      -11         

n           1      0        6        -5

 vậy................

13 tháng 8 2017


n=--1 hoac 1 nhe

13 tháng 8 2017

tớ bik mà

12 tháng 1 2017

n^2-2 chia hết (n+3)

n(n+3)-3n-2 chia hết cho (n+3)

n(n+3)-3(n+3)+7  chia hết cho (n+3)

=> n+3 là ước của 7

n+3={-7,-1,1,7)

n={-10,-4,-2,4)

13 tháng 8 2017

n^2-2 chia hết cho (n+3)

n(n+3 )-3n -2 chia hết (n +3)

n(n+3 )-3(n+3 )+7 chia het (n + 3)

suy ra n+3 là ước của 7

n+3 =(-7-1,1,7)

n= (-10,-4-2,4)

ủng hộ mikvoi

14 tháng 12 2023

\(n+3⋮2n+2\)

=>\(2n+6⋮2n+2\)

=>\(2n+2+4⋮2n+2\)

=>\(4⋮2n+2\)

=>\(2n+2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(2n\in\left\{-1;-3;0;-4;2;-6\right\}\)

=>\(n\in\left\{-\dfrac{1}{2};-\dfrac{3}{2};0;-2;1;-3\right\}\)

mà n nguyên

nên \(n\in\left\{0;-2;1;-3\right\}\)

14 tháng 12 2023

0 với -2 sai nha bạn
0+3 chia hết cho 2.0 +2?
1 chia hết cho -2?

Nhưng nếu không được thì tui ko hiểu sao tính ra được cái đó

30 tháng 1 2019

a) Ta có: n + 7 \(\in\)Ư(n + 8) 

<=> n + 8 \(⋮\)n + 7

<=> (n + 7) + 1 \(⋮\)n + 7

<=> 1 \(⋮\)n + 7 

<=> n + 7 \(\in\)Ư(1) = {1; -1}

Lập bảng:  

n + 7 1 -1
  n -6 -8

Vậy ...

30 tháng 1 2019

b) Ta có: 2n - 9 = 2(n - 5) + 1

Do n - 5 \(⋮\)n - 5 => 2(n - 5) \(⋮\)n - 5

Để 2n - 9 \(⋮\)n - 5 => 1 \(⋮\)n - 5 => n - 5 \(\in\)Ư(1) = {1; -1}

Lập bảng: tương tự

c) Ta có: n2 - n - 1 = n(n - 1) - 1

Do n - 1 \(⋮\)n - 1 => n(n - 1) \(⋮\)n - 1

Để n2 - n - 1 \(⋮\)n - 1 thì 1 \(⋮\)n - 1 => n - 1 \(\in\)Ư(1) = {1; -1}

Lập bảng: tương tự

d) Ta có: n2 + 5 = n(n + 1) - (n + 1) + 6 = (n - 1)(n + 1) + 6

Tương tự

13 tháng 5 2018

1) n=33

2) n=2

3) n=10

13 tháng 5 2018

1)n=33

2)n=2

3)n=10

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

9 tháng 2 2016

n=0 hoặc bằng n=4

9 tháng 2 2016

Ta có : 2n - 7 = 2n - 1 - 8 

Mà 2n - 1 chia hết cho n - 1

=> 8 chia hết cho n-1

=> n-1 \(\in\)Ư(8)

Sau đó bạn làm tương tự nha