Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co
(n-3) CHC (n+1)
-> n+1CHC n+1
->(n-3)-(n+1) CHC (n+1)
-> -4 CHC (n+1)
->n+1={1;-1;2;-2;4;-4}
->n={0;-2;1;-3;3;-5}
a) sai đề
b)2n-5 chia hết cho n+1=>(2n+2)-(5-2)=> 3 : n+1 => n+1={1;3}=>n={0;2}
1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)
mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21
=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.
=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}
Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.
2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3
để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)
Khi đó n = -5 ; -3 ; -1 ; 1
a)n+2={1;2;4;8;16}
n={-1;0;2;6;14}
b)(n-4)chia hết cho(n-1)
(n-1-3) chia hết cho(n-1)
Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)
Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}
suy ra n={1;4;0;-2}
c) 2n+8 thuộc B(n+1)
suy ra n+1 chia het cho 2n+8
suy ra 2n+2 chia het cho 2n+8
suy ra (2n+8)-6 chia het cho2n+8
Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8
suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}
mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)
suy ra 2n+8 thuộc{2;6;-2;-6}
suy ra 2n thuộc{-6;-2;-10;-14}
suy ra n thuộc {-3;-1;-5;-7}
d) 3n-1 chia het cho n-2
suy ra [(3n-6)+5chia hết cho n-2
Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2
suy ra n-2 thuộc{1;5;-1;-5}
suy ra n thuộc{3;7;1;-3}
e)3n+2 chia hết cho 2n+1
suy ra [(6n+3)+1] chia hết cho 2n+1
Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1
suy ra 2n+1 thuộc{1;-1}
suy ra 2n thuộc {0;-2}
suy ra n thuộc {0;-1}
a) ta có: 2n + 7 chia hết cho n + 2
2n + 4 + 3 chia hết cho n + 2
2.(n+2) + 3 chia hết cho n+2
mà 2.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nha
b) ta có: 3n + 10 chia hết cho n - 3
3n -9 + 19 chia hết chi n - 3
3.(n-3)+19 chia hết cho n - 3
=>...
(3n+2):(n-1) = 3 + 5/(n-1)
a)Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
c)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).
\(\Rightarrow\)2(n-7) - (2n+3) \(⋮\)2n+3
\(\Rightarrow\)(2n-14) - (2n+3) \(⋮\)2n+3
\(\Rightarrow\)2n - 14 - 2n - 3 \(⋮\)2n+3
\(\Rightarrow\)-17 \(⋮\)2n+3
\(\Rightarrow2n+3\inƯ\left(-17\right)=\left(1;-1;17;-17\right)\)
ta có bảng sau :
2n+3 1 -1 17 -17
n -1 -2 7 -10
mà \(n\in Z\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
theo bài ra ta có:\
\(\left(n-7\right)⋮\left(2n+3\right)\)
=> (n - 7) - (2n+3) \(⋮2n+3\)
=> \(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
=> \(2n-4-2n-3⋮2n+3\)
=> \(-7⋮2n+3\)
=> 2n+3 E Ư(-7) = { 1;-1;7;-7 }
ta có bảng sau:
2n+3 | 1 | -1 | 7 | -7 |
2n | -2 | -4 | 4 | -10 |
n | -1 | -2 | 2 | -5 |
vậy n ={ -1;-2;2;-5 }
n=0 hoặc bằng n=4
Ta có : 2n - 7 = 2n - 1 - 8
Mà 2n - 1 chia hết cho n - 1
=> 8 chia hết cho n-1
=> n-1 \(\in\)Ư(8)
Sau đó bạn làm tương tự nha