Chứng minh rằng trong tất cả các số có 7 chữ số khác nhau được lập từ 7 chữ số:1;2;3;4;5;6;7 ko tồn tại 2 số mà số này chia hết cho số kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ các chữ số 1,2,3,4,5,6,7 lập tất cả các số tự nhiên có 7 chữ số trong đó mỗi chữ số trên đều có mặt. Chứng minh rằng tổng tất cả các số đó chia hết cho 9.
Số các số lập được: 7x6x5x4x3x2x1 = 5040 (số)
Tổng các chữ số của mỗi số là: 7+6+5+4+3+2+1 = 28.
Tổng các chữ số của 5040 số đó là:
28 x 5040 = 141 120
Số 141 120 có tổng các chữ số là 9.
Chia hết cho 9 nên Tổng các số đó chia hết cho 9
Từ các chữ số 1,2,3,4,5,6,7 lập tất cả các số tự nhiên có 7 chữ số trong đó mỗi chữ số trên đều có mặt. Chứng minh rằng tổng tất cả các số đó chia hết cho 9.
Số các số lập được: 7x6x5x4x3x2x1 = 5040 (số)
Tổng các chữ số của mỗi số là: 7+6+5+4+3+2+1 = 28.
Tổng các chữ số của 5040 số đó là:
28 x 5040 = 141 120
Số 141 120 có tổng các chữ số là 9.
Chia hết cho 9 nên Tổng các số đó chia hết cho 9
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
1
các số lập được là
179 174 147 149 194 197 419 417 471 479 491 497 719 714 741 749 794 791 914 917 971 974 941 947 = 13986
2
tổng là
467 + 476 + 674 +647 + 764 +746 = 3772
Bài 1:
Tất cả các số đó là:
147 174 149 194 179 197
417 419 471 479 491 497
714 719 741 749 791 794
914 917 941 947 971 974
Tổng tất cả các số trên là:
147+174+149+194+179+.......+914+917+941+971+974= 13986
Đáp số 13986
a,
Có 4 cách chọn chữ số hàng nghìn
Có 3 cách chọn chữ số hàng trăm
Có 2 cách chọn chữ số hàng chục
Có 1 cách chọn chữ số hàng đơn vị
\(\Rightarrow\)có tất cả \(4\times3\times2\times1=24\)\((\)cách lập \()\)
Vậy ....
cách đơn giản nhất là bạn lập hết ra và chứng minh điều đó
không làm thế thì thà ko đăng còn hơn, nhất định phải còn 1 cách nào hay và nhanh gọn nhất, đâu phải mõi bài toán chỉ có 1 cách