K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

Nâng cao và pt tập 2 

25 tháng 1 2016

các bạn ơi nhanh giúp mình với ạ

25 tháng 1 2016

a,b,c là tham số nhé. mình lấy trong sách học tốt toán, các bạn giúp với

 

AH
Akai Haruma
Giáo viên
25 tháng 10

22 tháng 7 2020

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

22 tháng 7 2020

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)

24 tháng 12 2016

Bài 2

\(\left|3x-101\right|=200\)

\(\Rightarrow3x-101=200\) hoặc \(3x-101=-200\)

\(\Rightarrow3x=301\) hoặc \(3x=-99\)

\(\Rightarrow x=\frac{301}{3}\) hoặc \(x=-33\)

Bài 3:

\(\left(7x-1\right)^{12}=25^6\)

\(\Rightarrow\left(7x-1\right)^{12}=\left(5^2\right)^6\)

\(\Rightarrow\left(7x-1\right)^{12}=5^{12}\)

\(\Rightarrow7x-1=5\)

\(\Rightarrow7x=6\)

\(\Rightarrow x=\frac{6}{7}\)

2 tháng 2 2022

c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\)

\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)

Để Min P = 1 và Max P = 4 thì 

\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)

(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3) 

(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4) 

Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4

Vậy \(P=\frac{-4x+3}{x^2+1}\)

3 tháng 2 2022

ĐK \(x\ge y\)

Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\) 

HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)

Giải (1) ; kết hợp điều kiện => b = 1

=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4) 

20 tháng 2 2019

a)

Ta thấy \(3x^2⋮5\Rightarrow x⋮5\Leftrightarrow x=5a\)
Thay vào pt đầu ta có:\(15a^2+y^2=51\\ \Rightarrow y=3b\)

Hay\(5a^2+3b^2=17\)

vì x,y nguyên nên a,b cũng nguyên 

như vậy tìm được a=1,b=2

nên x=5,y=6

20 tháng 2 2019

\(\xi\frac{1}{a^2+2b^2+3}=\xi\frac{1}{\left(a^2+1\right)+\left(b^2+1\right)+1}\le\frac{1}{2}\xi\frac{1}{ab+b+1}=\frac{1}{2}\)|(do abc=1)