cho tam giác ABC cân tại A có AB=5cm, BC=6cm vẽ đường thẳng d vuông góc với BC, d cắt đường thẳng AB, BC lần lượt tại M,N gọi T là trung điểm M,N. Tính khoản cách từ I đén BC. Chứng minh khi d di động thì I sẽ di động trên một số đường thẳng cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh tứ giác AKDG là hình chữ nhật, ta cần chứng minh các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.
Ta có:
- Ta biết tam giác ABC là tam giác cân tại A, nên AH là đường cao của tam giác ABC và cắt BC thành hai phần bằng nhau. Vậy H là trung điểm của BC.
- Ta biết MN là đường thẳng vuông góc với BC, nên HK là đường cao của tam giác MNK và cắt MN thành hai phần bằng nhau. Vậy K là trung điểm của MN.
Vậy ta có AH = HK và AK là đường trung bình của tam giác AMN.
Ta cần chứng minh AK = DG.
Gọi P là giao điểm của AK và DG.
Ta có:
- Ta biết AH = HK, nên tam giác AHK là tam giác cân tại H. Vậy góc AHK = góc AKH.
- Ta biết MN là đường thẳng vuông góc với BC, nên tam giác MNK là tam giác vuông tại K. Vậy góc MNK = 90 độ.
- Ta biết AK là đường trung bình của tam giác AMN, nên góc AKH = góc MNK.
Từ các quan sát trên, ta có:
góc AHK = góc AKH = góc MNK = 90 độ.
Vậy tứ giác AKDG là hình chữ nhật với AK = DG.
Vậy ta đã chứng minh được tứ giác AKDG là hình chữ nhật.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành