Tìm x,y,z biết
a) \(\frac{2xcoongj9}{xcoongj3}cộng\frac{5xcoongj17}{xcoongj3}-\frac{3x}{xcoongj3}\)
là số nguyên với x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ có vài chỗ sai xót cần sửa lại
Còn đây là cách của mình
Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên
thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ
Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ
+ \(2005⋮x+y\)
Do 2005 có duy nhất ước 1 là số chính phương
=> \(x+y=2005\)
Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)
=> \(x=y=\frac{2005}{2}\)loại
+ \(x+y⋮2005\)và \(x+y\ne2005\)
=> \(x+y=2005.k^2\)( \(k\inℕ^∗,k>1\))
Tương tự :\(y+z=2005.h^2\)
\(x+z=2005.g^2\)( \(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)
=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)
Mà \(A\ge1\)
=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)
=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)
Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)
=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)
Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn
\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)
Thay vào ta được \(h=4;k=4\)
Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị
Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì
\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ
Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)
\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)
Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)
\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)
mà x,y nguyên dương=> x+y=k
\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)
Tương tự y+z=z+x=2005
Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài
Xét \(x+y⋮2005\)
\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)
Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)
Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì
\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)
\(\Rightarrow2005⋮3\)(vô lí)
Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài
P/s: Em không biết đúng không nữa, mong cô sửa hộ
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow x+y+z=xyz\)
Không mất tính tổng quát, giả sử: \(x\le y\le z\)
Lúc đó: \(x+y+z\le3z\)
\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
\(\Rightarrow xy\in\left\{1;2;3\right\}\)
* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\). \(\Rightarrow2+z=z\)(vô lí)
* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)
* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)) \(\Rightarrow4+z=3z\Leftrightarrow z=2\)
Vậy x,y,z là các hoán vị của (1,2,3)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow40=x\left(1-2y\right)\)
Đến đây bạn lập bảng ha !
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\)
<=>x2z+y2x+z2y=x2y+y2z+z2x
<=>(x2z-x2y)+(y2x-z2x)+(z2y-y2z)=0
<=>x2.(z-y)-x.(z-y)(z+y)+yz.(z-y)=0
<=>(z-y)(x2-xz-xy+yz)=0
<=>(z-y)(x-z)(x-y)=0
<=>x=y=z
Mà x+y+z=3
=>x=y=z=1
Đề trường nào khó vậy bạn!
Mk chịu lun!
Bạn tk mk nhé!Mk tk lại cho!