K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

27 tháng 8 2016

khó quá bạn ơi

13 tháng 9 2019

1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)

\(\Leftrightarrow x+y+z=xyz\)

Không mất tính tổng quát, giả sử: \(x\le y\le z\)

Lúc đó: \(x+y+z\le3z\)

\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

\(\Rightarrow xy\in\left\{1;2;3\right\}\)

* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\)\(\Rightarrow2+z=z\)(vô lí)

* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)

* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)\(\Rightarrow4+z=3z\Leftrightarrow z=2\)

Vậy x,y,z là các hoán vị của (1,2,3)

13 tháng 9 2019

\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)

\(\Leftrightarrow40=x\left(1-2y\right)\)

Đến đây bạn lập bảng ha !

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU

4 tháng 3 2018

Đề sai kìa bạn , xem lại phân số : (y+t/x+y)^2014

4 tháng 3 2018

vậy bn làm theo cái đúng của bn,mong bn giúp mk

22 tháng 8 2019

Làm câu a,b thôi nha !

a)Tính A khi x=1;x=2;x=5/2

x=1

Thay x vào biểu thức A, ta có:

\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)

x=2

Thay x vào biểu thức A ta có:

\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)

x=5/2

Thay x vào biểu thức A ta có:

\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)

b)Tìm x thuộc Z để A là số nguyên:

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì:

=>\(3x+2⋮x-3\)

\(\Rightarrow3x-9+11⋮x-3\)

\(\Rightarrow3\left(x-3\right)+11⋮x-3\)

\(\Rightarrow11⋮x-3\)

\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)

Xét trường hợp

\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)

Vậy A là số nguyên thì

\(x\inƯ\left(4;14\right)\)

Các bài còn lại làm tương tự !

8 tháng 3 2017

Ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+z}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{z+t+x}< \frac{t+y}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}< \frac{t}{z+t+x}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\) Hay M ko là số tự nhiên