K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

10 tháng 11 2017

\(x=19\) nên \(x-19=0\)

Ta có: A = \(x^5-20x^4+21x^3-39x^2+18x\)

= \(x^5-19x^4-x^4+19x^3+2x^3-38x^2-x^2+19x-x\)

= \(x^4\left(x-19\right)-x^3\left(x-19\right)+2x^2\left(x-19\right)-x\left(x-19\right)-x\)

= \(-x=-19\)

Bài này bạn có thể làm theo cách khác chẳng hạn bạn áp dụng đ/lí Bê-du rồi lập sơ đồ Hooc-ne để tính

11 tháng 8 2020

\(B=x^6-20x^5-20x^4-20x^3-2x^2-20x+3\)

\(B=x^6-21x^5+x^5-21x^4+x^4-21x^3+x^3-21x^2+19x^2-20x+3\)

\(B=x^5\left(x-21\right)+x^4\left(x-21\right)+x^3\left(x-21\right)+x^2\left(x-21\right)+19x^2-20x+3\)

Do \(x=21\)    nên \(\left(x-21\right)\left(x^5+x^4+x^3+x^2\right)=0\)

=> \(B=19.21^2-20.21+3=7962\)

VẬY \(B=7962\)

30 tháng 9 2015

x2-x = 0 <=> x (x-1) = 0 <=> x = 0 hoặc x= 1

Với x = 0 ta có : B = 2.04-11.03+11.02-16.0+5 = 5

Với x = 1 ta có : B = 2.14-11.13+11.12-16.1+5 = -9

9 tháng 10 2017

hình như bạn viết thiếu đề thì phải? phải có giá trị của x bằng bao nhiêu mới tính được.

23 tháng 7 2019

a) Vì\(x=99\Rightarrow x+1=100\)

Thay x+1=100 vào biểu thức A ta được :

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)

\(=x+9\)

\(=99+9\)

\(=108\)

b) Tương tự

23 tháng 7 2019

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)

\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)

\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)

\(\Rightarrow A=0-0+0+01-9=-9\)

24 tháng 8 2020

Thay x = 20 vào biểu thức B ta có

\(B=x^6-x.x^5-x.x^4-x.x^3-x.x^2-x.x+3\)

    \(=x^6-x^6-x^5-x^4-x^3-x^2+3\)

    \(=-x^5-x^4-x^3-x^2+3\)

    \(=-x^2\left(x^3+x^2+x+1\right)+3\)

    \(=-20^2\left(20^3+20^2+20+1\right)+3\)

    \(=-400\left(8000+400+20+1\right)+3\)

     \(=-400.8421+3\)  

       \(=-3368397\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

17 tháng 11 2021

\(\Leftrightarrow x=2-\sqrt{3}\)

Dễ thấy x là nghiệm của PT \(x^2-4x+1\)

\(H=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2019\\ H=\left(x^2-4x+1\right)\left(x^3+x^2+5\right)+2019\\ H=2019\)