Cho P=\(n^3-n^2-n+1\) Tìm tất cả các số nguyên dương n để P là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
Với n nguyên dương.
Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)
Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)
và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)
=> \(A⋮n^2+n+1\)
Theo bài ra: A là số nguyên tố
=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương
Vậy n=1
Đặt A=1+n2017+n2018
*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)
Do đó: A là số nguyên tố
*Nếu: n>1
1+n2017+n2018
=(n2018-n2)+(n2017-n)+(n2+n+1)
=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)
Vì: n2016 chia hết cho n3
=> n2016-1 chia hết cho n3-1
=> n2016-1 chia hết cho (n2+n+1)
Mà: 1<n2+n+1<A=> A là số nguyên tố (k/tm đk đề bài số nguyên dương)
Vậy n=1
Xét n=1 thì biểu thức A = 3
Xét n>1:
Ta có: \(A=n^{2015}+n+1\)
\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)
\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)
\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số
Vậy n=1
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
n+1;n+5;n+7;n+13;n+17;n+25;n+37.
cách làm:
n+7=n+7.1
n+1=(n+1)+7.0
n+37=(n+2)+7.5
n+17=(n+3)+7.2
n+25=(n+40)+7.3
n+5=(n+5)+7.0
n+13=(n+6)+7.1
các số khi chia cho 7 sẽ có 7 số dư khác nhau
==>trong các số trên có ít nhất 1 số chia hết cho 7
các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại
==>n+1 hoặc n+5 chia hết cho 7
+trường hợp 1
n+1=7==>n=6,khi đó các số đều là SNT
trường hợp 2
n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6